

NNT : 2016 EMSE 0813

THÈSE

présentée par

Andrei CIORTEA

pour obtenir le grade de
Docteur de l’École Nationale Supérieure des Mines de Saint-Étienne

en cotutelle avec Université « Politehnica » de Bucarest

Spécialité : Informatique

TISSER LE WEB SOCIAL DES OBJETS :

PERMETTRE UNE INTERACTION AUTONOME ET FLEXIBLE
DANS L’INTERNET DES OBJETS

soutenue à Bucarest, le 14 janvier 2016

Membres du jury

Président : Emil SLUȘANSCHI Professeur, Université Politehnica, Bucarest
Rapporteurs : Fabien GANDON

Erik MANNENS
DR HDR, INRIA, Sophia Antipolis
Professeur, Université de Gand, Gand

Examinateur(s) : Alessandro RICCI Professeur Associé, Université de Bologne,
Bologne

 Costin BĂDICĂ Professeur, Université de Craiova, Craiova
 Ștefan TRĂUȘAN-MATU Professeur, Université Politehnica, Bucarest
Directeur(s) de thèse : Adina Magda FLOREA Professeur, Université Politehnica, Bucarest
 Olivier BOISSIER Professeur, École Nationale Supérieure des

Mines, Saint-Etienne
 Antoine ZIMMERMANN Maître Assistant, Ecole Nationale Supériere

des Mines, Saint-Etienne

ABSI Nabil CR Génie industriel CMP

AVRIL Stéphane PR2 Mécanique et ingénierie CIS

BALBO Flavien PR2 Informatique FAYOL

BASSEREAU Jean-François PR Sciences et génie des matériaux SMS

BATTON-HUBERT Mireille PR2 Sciences et génie de l'environnement FAYOL

BERGER DOUCE Sandrine PR2 Sciences de gestion FAYOL

BERNACHE-ASSOLLANT Didier PR0 Génie des Procédés CIS

BIGOT Jean Pierre MR(DR2) Génie des Procédés SPIN

BILAL Essaid DR Sciences de la Terre SPIN

BLAYAC Sylvain MA(MDC) Microélectronique CMP

BOISSIER Olivier PR1 Informatique FAYOL

BORBELY Andras MR(DR2) Sciences et génie des matériaux SMS

BOUCHER Xavier PR2 Génie Industriel FAYOL

BRODHAG Christian DR Sciences et génie de l'environnement FAYOL

BRUCHON Julien MA(MDC) Mécanique et ingénierie SMS

BURLAT Patrick PR1 Génie Industriel FAYOL

COURNIL Michel PR0 Génie des Procédés DIR

DARRIEULAT Michel IGM Sciences et génie des matériaux SMS

DAUZERE-PERES Stéphane PR1 Génie Industriel CMP

DEBAYLE Johan CR Image Vision Signal CIS

DELAFOSSE David PR0 Sciences et génie des matériaux SMS

DESRAYAUD Christophe PR1 Mécanique et ingénierie SMS

DOLGUI Alexandre PR0 Génie Industriel FAYOL

DRAPIER Sylvain PR1 Mécanique et ingénierie SMS

FEILLET Dominique PR1 Génie Industriel CMP

FEVOTTE Gilles PR1 Génie des Procédés SPIN

FRACZKIEWICZ Anna DR Sciences et génie des matériaux SMS

GARCIA Daniel MR(DR2) Génie des Procédés SPIN

GERINGER Jean MA(MDC) Sciences et génie des matériaux CIS

GOEURIOT Dominique DR Sciences et génie des matériaux SMS

GRAILLOT Didier DR Sciences et génie de l'environnement SPIN

GROSSEAU Philippe DR Génie des Procédés SPIN

GRUY Frédéric PR1 Génie des Procédés SPIN

GUY Bernard DR Sciences de la Terre SPIN

HAN Woo-Suck MR Mécanique et ingénierie SMS

HERRI Jean Michel PR1 Génie des Procédés SPIN

KERMOUCHE Guillaume PR2 Mécanique et Ingénierie SMS

KLOCKER Helmut DR Sciences et génie des matériaux SMS

LAFOREST Valérie MR(DR2) Sciences et génie de l'environnement FAYOL

LERICHE Rodolphe CR Mécanique et ingénierie FAYOL

LI Jean-Michel Microélectronique CMP

MALLIARAS Georges PR1 Microélectronique CMP

MAURINE Philippe CMP

MOLIMARD Jérôme PR2 Mécanique et ingénierie CIS

MONTHEILLET Frank DR Sciences et génie des matériaux SMS

MOUTTE Jacques CR Génie des Procédés SPIN

NEUBERT Gilles FAYOL

NIKOLOVSKI Jean-Pierre Ingénieur de recherche CMP

NORTIER Patrice PR1 SPIN

PIJOLAT Christophe PR0 Génie des Procédés SPIN

PIJOLAT Michèle PR1 Génie des Procédés SPIN

PINOLI Jean Charles PR0 Image Vision Signal CIS

POURCHEZ Jérémy MR Génie des Procédés CIS

ROBISSON Bruno Ingénieur de recherche CMP

ROUSSY Agnès MA(MDC) Génie industriel CMP

ROUSTANT Olivier MA(MDC) Mathématiques appliquées FAYOL

ROUX Christian PR Image Vision Signal CIS

STOLARZ Jacques CR Sciences et génie des matériaux SMS

TRIA Assia Ingénieur de recherche Microélectronique CMP

VALDIVIESO François PR2 Sciences et génie des matériaux SMS

VIRICELLE Jean Paul DR Génie des Procédés SPIN

WOLSKI Krzystof DR Sciences et génie des matériaux SMS

XIE Xiaolan PR1 Génie industriel CIS

YUGMA Gallian CR Génie industriel CMP

BERGHEAU Jean-Michel PU Mécanique et Ingénierie ENISE

BERTRAND Philippe MCF Génie des procédés ENISE

DUBUJET Philippe PU Mécanique et Ingénierie ENISE

FEULVARCH Eric MCF Mécanique et Ingénierie ENISE

FORTUNIER Roland PR Sciences et Génie des matériaux ENISE

GUSSAROV Andrey Enseignant contractuel Génie des procédés ENISE

HAMDI Hédi MCF Mécanique et Ingénierie ENISE

LYONNET Patrick PU Mécanique et Ingénierie ENISE

RECH Joël PU Mécanique et Ingénierie ENISE

SMUROV Igor PU Mécanique et Ingénierie ENISE

TOSCANO Rosario PU Mécanique et Ingénierie ENISE

ZAHOUANI Hassan PU Mécanique et Ingénierie ENISE

EMSE : Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat (titulaires d’un doctorat d’État ou d’une HDR)

ENISE : Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat (titulaires d’un doctorat d’État ou d’une HDR)

Spécialités doctorales Responsables :

SCIENCES ET GENIE DES MATERIAUX K. Wolski Directeur de recherche

MECANIQUE ET INGENIERIE S. Drapier, professeur

GENIE DES PROCEDES F. Gruy, Maître de recherche

SCIENCES DE LA TERRE B. Guy, Directeur de recherche

SCIENCES ET GENIE DE L’ENVIRONNEMENT D. Graillot, Directeur de recherche

Spécialités doctorales Responsables

MATHEMATIQUES APPLIQUEES O. Roustant, Maître-assistant

INFORMATIQUE O. Boissier, Professeur

IMAGE, VISION, SIGNAL JC. Pinoli, Professeur

GENIE INDUSTRIEL A. Dolgui, Professeur

MICROELECTRONIQUE S. Dauzere Peres, Professeur

M
is

e
à

jo
u

r
:

2
8

/1
0

/2
0

1
4

	
Proiect	EXCELDOC	-	POSDRU/159/1.5/S/132397		

Excelență	în	cercetare	prin	burse	doctorale	și	postdoctorale	

UNIVERSITATEA POLITEHNICA DIN BUCUREŞTI	
Facultatea de Automatică și Calculatoare	

 Departamenul de Calculatoare 	
 	
	
 ECOLE NATIONALE SUPERIEURE DES MINES DE SAINT-ETIENNE	

Ecole Doctorale ED-SIS de Saint-Etienne
Laboratoire Hubert Curien, Institut Henri Fayol, Mines Saint-Etienne

Nr. Decizie Senat 239 din 03.12.2015

TEZĂ DE DOCTORAT

Un Web Social de Obiecte:

Interacțiune Autonomă și Flexibilă în Internetul Obiectelor

Weaving a Social Web of Things:

Enabling Autonomous and Flexible Interaction in the Internet of Things

Autor: Ing. Andrei-Nicolae CIORTEA	

COMISIA DE DOCTORAT	

Preşedinte Prof.	dr.	Emil	SLUȘANSCHI	 de la
Universitatea	„Politehnica“	din	

București	

Conducător de doctorat-1 Prof.	dr.	Adina	Magda	FLOREA	 de la
Universitatea	„Politehnica“	din	

București	

Conducător de doctorat-2 Prof.	dr.	Olivier	BOISSIER	 de la
École	Nationale	Superieure	des	

Mines	de	Saint-Etienne	

Co-supervizor de doctorat Assoc.	Prof.	dr.	Antoine	ZIMMERMANN	 de la
École	Nationale	Superieure	des	

Mines	de	Saint-Etienne	

Referent Prof.	dr.	Costin	BĂDICĂ	 de la Universitatea	din	Craiova	

Referent Dr.	Fabien	GANDON	 de la
Institut	National	de	Recherche	en	
Informatique	et	en	Automatique	

(INRIA)	

Referent Prof.	dr.	Erik	MANNENS	 de la Universitatea	din	Gent	

Referent Assoc.	Prof.	dr.	Alessandro	RICCI	 de la Universitatea	din	Bologna	

Referent Prof.	dr.	Ștefan	TRĂUȘAN	 de la
Universitatea	„Politehnica“	din	

București	

Bucureşti 2015	

To my grandfather

iii

Acknowledgments

The past few years have been an incredible journey. This page is about the people
that have supported me throughout this journey.

First of all, I would like to express my sincere appreciation and gratitude to my
supervisors, Prof. Adina-Magda Florea, Prof. Olivier Boissier and Assoc. Prof.
Antoine Zimmermann, for their constant support, guidance and feedback.

I would like to thank Prof. Adina-Magda Florea for introducing me to the won-
derful field of artificial intelligence, for inviting me to join the AI-MAS laboratory,
and especially for her constant trust and almost unlimited support in all my endeav-
ors. Having had the opportunity to work with such an optimistic and supportive
supervisor has completely altered the course of my life in the best possible way. In
addition to this dissertation, an important result of our intense work over the past
few years has been the Romanian Association for Artificial Intelligence, which is by
any measure a significant achievement.

I would like to express my deepest gratitude to Prof. Olivier Boissier and Assoc.
Prof. Antoine Zimmermann for their constant guidance and support in my research.
Their insightful input and our interactions over the years have not only made me
a better researcher, but also a better person. I also want to thank Prof. Olivier
Boissier for making my one year and a half stay in Saint-Étienne possible and for
undertaking many of the administrative burdens such that I could focus on my
research instead. All these efforts have been much appreciated.

I also wish to thank my colleagues in the AI-MAS and ISCOD laboratories
for their friendship and support. In particular, my friend Alex Sorici has been a
constant companion throughout the years, in many travels and in many projects.
I consider myself fortunate to have such a brilliant friend. Many thanks go out to
Mihai Trăscău, Valentin Lungu, Costin Caval, Marius-Tudor Benea, Andrei Ismail
and all my other colleagues in the AI-MAS team that I was fortunate to work with
in our many projects. I want to thank Bissan Audeh, for being a most optimistic
and positive office colleague, Reda Yaich, for our many discussions and his useful
advices, and Amro Najjar, Oudom Kem, Marie-Line Barneoud, Gauthier Picard,
Xavier Serpaggi, Niloufare Sadr, Nicolas Cointe and everyone in the ISCOD team
for making my stay in Saint-Étienne most pleasant.

I would like to thank Cristian Stoica and AQUASoft for their financial support
in the beginning of my PhD studies and for the wonderful experience of working
together.

Finally, my deepest gratitude to my family and friends for their understanding
and constant support in all my endeavors. I consider myself most fortunate to have
so many meaningful relationships in my life.

The work has been funded by the Sectoral Operational Programme Human Re-
sources Development 2007-2013 of the Ministry of European Funds through the
Financial Agreement POSDRU/159/1.5/S/132397. Andrei Ciortea has also been
funded by the Rhône-Alpes region (France).

Abstract

The Internet of Things (IoT) aims to create a global ubiquitous ecosystem composed
of large numbers of heterogeneous devices. To achieve this vision, the World Wide
Web is emerging as a suitable candidate to interconnect IoT devices and services at
the application layer into a Web of Things (WoT).

However, the WoT is evolving towards large silos of things, and thus the vision
of a global ubiquitous ecosystem is not fully achieved. Furthermore, even if the WoT
facilitates mashing up heterogeneous IoT devices and services, existing approaches
result in static IoT mashups that cannot adapt to dynamic environments and evolv-
ing user requirements. The latter emphasizes another well-recognized challenge in
the IoT, that is enabling people to interact with a vast, evolving, and heterogeneous
IoT.

To address the above limitations, we propose an architecture for an open and
self-governed IoT ecosystem composed of people and things situated and interacting
in a global environment sustained by heterogeneous platforms. Our approach is
to endow things with autonomy and apply the social network metaphor to create
flexible networks of people and autonomous things. We base our approach on results
from multi-agent and WoT research, and we call the envisioned IoT ecosystem the
Social Web of Things.

Our proposal emphasizes heterogeneity, discoverability and flexible interaction
in the IoT. In the same time, it provides a low entry-barrier for developers and
users via multiple layers of abstraction that enable them to effectively cope with the
complexity of the overall ecosystem. We implement several application scenarios to
demonstrate these features.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Dissertation Outline . 4

I State of the Art 7

2 A Hitchhiker’s Guide to the World Wide Web 9
2.1 The Architecture of the Web . 10

2.1.1 Representational State Transfer 10
2.1.2 The “out-of-band information” problem 12

2.2 The Web of People . 13
2.2.1 The problem of walled gardens 14
2.2.2 An open and distributed Social Web 14
2.2.3 Enabling technologies . 15

2.3 The Web for Machines . 20
2.3.1 Adding structure to information 20
2.3.2 Web ontologies . 20
2.3.3 Reading/Writing Linked Data 21

2.4 The Web of Things . 22
2.4.1 The need for an application architecture 23
2.4.2 A resource-oriented architecture 23

2.5 Summary . 25

3 Emerging Paradigms in the Web of Things 27
3.1 The Web of Things in Practice . 28

3.1.1 WoT devices . 28
3.1.2 WoT platforms . 29
3.1.3 Interoperability in the WoT 30

3.2 Interacting with Physical Things . 33
3.2.1 Local interaction . 33
3.2.2 Remote interaction . 35

3.3 Physical Mashups . 37
3.3.1 Process-driven composition 37
3.3.2 Goal-driven composition . 38

3.4 Social Aspects in the WoT . 39
3.4.1 Platforms and applications 39
3.4.2 Social things . 40

3.5 Summary . 42

viii Contents

4 Autonomy, Sociability and Regulation 45
4.1 Multi-Agent Systems . 45

4.1.1 Properties of agents and multi-agent systems 46
4.1.2 Modeling dimensions for multi-agent systems 46

4.2 Sociability in Multi-Agent Systems 47
4.2.1 Agents and artifacts . 47
4.2.2 Interaction . 48
4.2.3 Social reasoning . 50

4.3 Regulation in Multi-Agent Systems 50
4.3.1 Norms in MAS . 51
4.3.2 Social control . 52
4.3.3 Normative organisations . 52

4.4 Summary . 53

II Designing a Social Web of Things 55

5 A Layered Architecture for the Social Web of Things 57
5.1 Application Scenarios . 58

5.1.1 Discoverability: The social TV 58
5.1.2 Flexible interaction: The wake-up call 59
5.1.3 Remote interaction: The laundry room 60
5.1.4 Coordination: A welcoming home 60
5.1.5 Discussion . 61

5.2 Principles . 63
5.2.1 Foundational principles . 63
5.2.2 General design principles . 65

5.3 Layered Architecture . 66
5.3.1 Agency layer . 68
5.3.2 Social layer . 69
5.3.3 Normative layer . 72
5.3.4 Application layer . 73

5.4 Summary . 74

6 A Model for Socio-technical Networks 75
6.1 Modeling Dimensions . 76

6.1.1 Preliminary definitions . 76
6.1.2 The social dimension . 79
6.1.3 The normative dimension . 80
6.1.4 The spatial dimension . 80
6.1.5 The digital dimension . 81

6.2 Formal Definitions . 85
6.2.1 Structure . 85
6.2.2 Inferences . 87

Contents ix

6.2.3 Dynamics . 87
6.2.4 Norms . 88

6.3 Digital Socio-technical Networks . 88
6.3.1 Entity and relation types . 89
6.3.2 Operation types . 89
6.3.3 Social artifacts . 92

6.4 Summary . 97

7 A Hypermedia-driven Social Web of Things 99
7.1 A Semantic Description Framework for STNs 100

7.1.1 STN ontology . 100
7.1.2 Agent descriptions . 104
7.1.3 Platform descriptions . 106
7.1.4 Digital artifact descriptions 108

7.2 Uniform Interfaces for STN Platforms 110
7.2.1 Uniformity constraints . 111
7.2.2 Control-driven interfaces . 115
7.2.3 Data-driven interfaces . 116
7.2.4 Mixed interfaces . 117

7.3 A Five-level Integration Strategy for STN Platforms 118
7.3.1 Level 1: Publish a platform description 118
7.3.2 Level 2: Enable social things as first-class citizens 119
7.3.3 Level 3: Produce STN-compliant representations 119
7.3.4 Level 4: Expose a uniform API 120
7.3.5 Level 5: Make the platform open 120

7.4 Summary . 121

III Experience and Validation 123

8 Deploying a World-Wide Socio-technical Graph 125
8.1 Integrating Existing Platforms into the SWoT 126

8.1.1 Facebook . 127
8.1.2 SoundCloud . 131
8.1.3 Twitter . 133
8.1.4 Dweet.io . 135
8.1.5 Discussion . 139

8.2 ThingsNet: a Level 5 STN Platform 141
8.2.1 Design and implementation 142
8.2.2 API overview . 143
8.2.3 Discussion . 145

8.3 Deployment of a World-Wide Socio-technical Graph 146
8.3.1 Deployment scenario . 146
8.3.2 A browser for STNs . 147

x Contents

8.3.3 Discussion: browsing the Social Web of Things 149
8.4 Summary . 152

9 Bringing Rational Agents to the Social Web of Things 153
9.1 A Multi-agent Middleware for the Social Web of Things 154

9.1.1 Programming social things as BDI agents 155
9.1.2 Multi-agent environments for the SWoT 156

9.2 Use Case: Crawling the Social Web of Things 160
9.2.1 Deployment Scenario . 160
9.2.2 Agent logic . 161
9.2.3 Lessons learned . 162

9.3 Use Case: Flexible Interaction among Social Things 163
9.3.1 Deployment scenario . 164
9.3.2 Agent logic . 165
9.3.3 Lessons learned . 168

9.4 Use Case: Remote Interaction with Social Things 169
9.4.1 Deployment Scenario . 169
9.4.2 Agent logic . 170
9.4.3 Lessons learned . 170

9.5 Use Case: Regulation in the Social Web of Things 171
9.5.1 Organisational specification 171
9.5.2 Agent logic . 172
9.5.3 Lessons learned . 172

9.6 Summary . 173

IV Conclusions and Perspectives 175

10 Conclusions and Perspectives 177
10.1 Summary . 177
10.2 Contributions . 179
10.3 Future Work . 181

10.3.1 Limitations . 181
10.3.2 Privacy preservation . 182
10.3.3 Social reasoning . 183

List of publications 185

V Appendices 187

A Examples of STN Description Documents 189
A.1 Facebook . 189
A.2 Twitter . 196
A.3 SoundCloud . 201

Contents xi

A.4 Dweet.io . 204
A.5 ThingsNet . 206

B Normative Organizations for Home Automation 211

Bibliography 215

Chapter 1

Introduction

In 1991, two independent events took place that would inspire future generations of
researchers and developers. On August 6th, Tim Berners-Lee announced a summary
of the World Wide Web project on the alt.hypertext newsgroup.1 Soon to follow,
the September issue of Scientific American published Mark Weiser’s seminal article
on ubiquitous computing, a vision in which networks of small computers disappear
into the background and “weave themselves” into the physical world [Weiser 1991].
A couple of decades later, these two lines of research come to intersect.

Standardization efforts led by the Internet Engineering Task Force are rapidly
turning Weiser’s vision into reality [Ishaq 2013]. Low-cost devices with severely
constrained resources can now converge at the network layer into an Internet of
Things (IoT) [Montenegro 2007, Hui 2011, Shelby 2012]. At the application layer,
the Constrained Application Protocol (CoAP) [Shelby 2014a] enables the direct in-
tegration into the Web of devices with as little as 100KiB of ROM and 10 KiB
of RAM [Kovatsch 2015]. On account of its scalable architecture, the World Wide
Web is emerging as the application architecture for the IoT, i.e. the so-called Web of
Things (WoT) [Wilde 2007, Guinard 2010b]. In 2014, the World Wide Web Consor-
tium chartered an interest group to investigate requirements for the standardization
of a WoT.2

Integrating IoT devices into the Web enables the creation of an Internet-scale
ecosystem of loosely coupled heterogeneous devices and services, henceforth things.
This loose coupling between things facilitates mashing up services that extend to
the physical world, henceforth IoT mashups or physical mashups [Guinard 2009],
very much like mashing up regular Web services. Developers can then use standard
Web technologies to mash up a Web-enabled wristband3 with a Web-enabled coffee
machine, for instance, such that there is always fresh coffee available when their
owner wakes up in the morning, which significantly lowers the entry-barrier for the
development of IoT applications.

1.1 Motivation

The Web enables application-layer interoperability in the IoT. Many cloud-based
IoT platforms are already using the Web to provide data repositories for IoT de-

1http://www.w3.org/People/Berners-Lee/1991/08/art-6487.txt, Accessed: 30.11.2015.
2http://www.w3.org/2014/12/wot-ig-charter.html, Accessed: 30.11.2015.
3Such as a smart wristband from the Jawbone UP series: https://jawbone.com/up/, Ac-

cessed: 30.11.2015.

2 Chapter 1. Introduction

vices. However, in absence of standards to ensure interoperability at the platform
level, the WoT is already evolving towards large silos of things [Blackstock 2014a].
Existing WoT platforms are closed and expose heterogeneous application program-
ming interfaces (APIs). By analogy, a similar situation is presented by the problem
of walled gardens in the Social Web [Halpin 2010].

Limitation 1. Things are confined to Web silos.

Furthermore, many existing WoT platforms do not facilitate the discovery of
things. Any relations among things, such as the one between the wristband and the
coffee machine in our previous example, are hard-coded into the application logic.
The lack of an external and uniformly accessible representation of relations among
things hinders the “network effect”.

The WoT initiative encourages interconnecting things via hyperlinks such that
they become discoverable [Guinard 2010b]. However, with predictions of billions
of connected devices by the end of 2020 [MacGillivray 2013], things have to be
interconnected in an effective and consistent manner.

Limitation 2. Things are not discoverable in an effective and consistent manner.

The WoT facilitates the development of IoT mashups via standard Web tech-
nologies. Furthermore, mashup editors4 [Blackstock 2012, Kleinfeld 2014] can fur-
ther lower development costs or even enable tech savvy users to create their own
IoT mashups. However, manually “wiring” the IoT does not scale. Furthermore,
once created, these mashups are static and cannot adapt to dynamic environments
or evolving user requirements [Mayer 2014c].

Limitation 3. Manually created IoT mashups are static and do not scale.

Another well-recognized challenge in the IoT is enabling people to manage and
interact with large numbers of heterogeneous things [Randall 2003, Formo 2012,
Takayama 2012], and to coordinate and keep track of interactions between collabo-
rative things [Brush 2011, Formo 2012, Mayer 2014a].

Limitation 4. Managing, interacting with and keeping track of large numbers of
heterogeneous things is cumbersome.

Our thesis is that we can address the above limitations by endowing things with
autonomy and applying the social network metaphor to the IoT to create flexible
networks of people and autonomous things.

1.2 Research Questions

The overarching objective of this dissertation is to contribute to the development of
a global IoT ecosystem in which people and autonomous things interact in a flexible

4http://www.nodered.org/, Accessed: 30.11.2015.

1.2. Research Questions 3

fashion. We build our approach on state-of-the-art results from multi-agent and
WoT research and we call the envisioned IoT ecosystem the Social Web of Things
(SWoT). To bring about this ecosystem, we address four research questions, which
we present in what follows. The first two questions are focused around the core
tenets of our thesis and the last two are focused around addressing the identified
limitations.

Research Question 1. How can we bring systems of autonomous things to the
Web of Things?

The first cornerstone of our thesis is autonomy. Endowing things with autonomy
raises new challenges to be addressed, such as how can control be enabled over the
autonomy of things, or how can developers design and program autonomous things
and networks of autonomous things. To this purpose, we adapt models from multi-
agent research and propose an architecture for the SWoT that introduces several
layers of abstraction in order to enable developers and users to cope with the overall
complexity of the envisioned ecosystem.

Research Question 2. How can we model networks of people and autonomous
things such that things can manipulate and reason upon them?

The second cornerstone of our thesis is to apply the social network metaphor to
the IoT to create flexible networks of people and autonomous things, which we call
socio-technical networks (STNs). STNs are the building blocks of the SWoT and
span across the physical-digital space: they reflect the physical world via sensors and
can reflect back on the physical world via actuators. STNs should be flexible in the
sense that both people and things should be able to manipulate them in a reliable
fashion. Reliability implies that both people and things should be able to interpret
and reason upon STNs. To this purpose, we introduce and formalize concepts that
take into account the various dimensions and requirements for STNs.

Research Question 3. How can we enable things to transcend Web silos?

If the SWoT is to be a global ecosystem, things must not be confined to Web
silos (cf. Limitation 1). Furthermore, in addition to WoT platforms, it is worth
to note that the SWoT ecosystem could also benefit from many other existing Web
platforms, such as social platforms. To this purpose, we provide solutions to hide
platform heterogeneity behind uniform interfaces such that things can access and
use heterogeneous platforms in a uniform fashion.

Research Question 4. How can we enhance discoverability and flexible interaction
in the Web of Things?

Things in the SWoT should be discoverable (cf. Limitation 2). Furthermore,
they should be able to autonomously discover and interact with one another. In
other words, IoT mashups should be able to “rewire” themselves in order to adapt
to dynamic environments and evolving user requirements (cf. Limitation 3). In a

4 Chapter 1. Introduction

similar manner, people should be able to discover and interact with heterogeneous
things in a uniform fashion (cf. Limitation 4). We consider the last two aspects to be
similar in the sense that if large numbers of people and heterogeneous things are to
interact with one another in a scalable and flexible fashion, they must be “decoupled”
by means of a uniform interaction mechanism. To this purpose, we propose to use
our STN model and existing programming paradigms for multi-agent systems.

1.3 Dissertation Outline

This dissertation is structured in four parts:

In Part I, we analyze the state-of-the-art in search for related models and tech-
nologies that can be used to bring about the envisioned IoT ecosystem. In Chap-
ter 2, we discuss the architecture and various facets of the World Wide Web. We
define in further detail the problem of transcending Web silos and discuss current
developments in the field on which we base our approach.

In Chapter 3, we look at emerging paradigms in the WoT in order to define and
discuss in further detail the limitations that motivate our work. In this chapter, we
also discuss related work that investigates the use of social aspects in the IoT/WoT,
in particular social networks and similar concepts.

In Chapter 4, we discuss models and results from multi-agent research that can
be used to enable autonomy, sociability and regulation in the SWoT.

In Part II, we introduce our proposed architecture, models and solutions for the
development of the envisioned IoT ecosystem. In Chapter 5, we introduce several ap-
plication scenarios to help illustrate our vision and further define the properties and
requirements for the SWoT. Following these requirements, we present the founda-
tional principles on which we build our approach and propose a layered architecture
for the SWoT. In this chapter, we address Research Question 1.

In Chapter 6, we define in further detail the various dimensions of an STN and
formalize our discussion to provide a general mathematical model for STNs. Things
can use this model to obtain an unambiguous representation of an STN and of
the operations through which they can participate in the STN. In this chapter, we
address Research Question 2.

In Chapter 7, we apply our STN model to propose solutions for the integration of
heterogenous platforms into the SWoT. We propose a progressive integration strat-
egy that balances platform design and implementation autonomy versus alignment
with the ecosystem. In this chapter, we address Research Question 3.

In Part III, we present the current validations of our work. In Chapter 8,
we demonstrate that our approach supports platform heterogeneity by deploying
a SWoT environment that integrates several existing social platforms, namely Face-
book, SoundCloud, and Twitter, and a WoT platform, that is Dweet.io. We also
present and integrate into this SWoT environment our own implementation of an

1.3. Dissertation Outline 5

STN platform that conforms to all the requirements of our progressive integration
strategy in Chapter 7.

In Chapter 9, our investigation comes full circle: we present and discuss im-
plementations of the application scenarios introduced in Chapter 5. In doing so,
we validate the foundational principles that provide the underpinning of our pro-
posal and we demonstrate that we are able to successfully apply existing multi-agent
technology to facilitate the development of SWoT applications. In this chapter, we
address Research Question 4.

In Part IV, we provide a summary of our work and highlight directions for future
research.

Part I

State of the Art

Chapter 2

A Hitchhiker’s Guide to the
World Wide Web

Contents
2.1 The Architecture of the Web 10

2.1.1 Representational State Transfer 10

2.1.2 The “out-of-band information” problem 12

2.2 The Web of People . 13

2.2.1 The problem of walled gardens 14

2.2.2 An open and distributed Social Web 14

2.2.3 Enabling technologies . 15

2.3 The Web for Machines . 20

2.3.1 Adding structure to information 20

2.3.2 Web ontologies . 20

2.3.3 Reading/Writing Linked Data 21

2.4 The Web of Things . 22

2.4.1 The need for an application architecture 23

2.4.2 A resource-oriented architecture 23

2.5 Summary . 25

The World Wide Web exhibits several architectural properties that have made
it a suitable candidate to interconnect Internet of Things (IoT) devices and services
at the application layer, such as scalability and evolvability. It is thus desirable to
preserve these architectural properties in our envisioned IoT ecosystem. To this
purpose, in this chapter we discuss the principles that provide the underpinning of
the Web architecture. We also “hitchhike” through the various facets of the Web
in order to identify and discuss current developments that could be useful to bring
about the envisioned IoT ecosystem.

In Section 2.1, we discuss the architecture of the Web and investigate in further
detail the problem of Web silos (cf. Limitation 1). In Section 2.2, we discuss
the state of the Social Web and future directions envisioned by the World Wide
Web Consortium. In Section 2.3, we discuss the Web as an information space for
machines. In Section 2.4, we discuss recent developments that enable the integration
of physical devices into the Web.

10 Chapter 2. A Hitchhiker’s Guide to the World Wide Web

2.1 The Architecture of the Web

The development of the modern Web was guided by the Representational State
Transfer (REST) architectural style [Fielding 2000]. We briefly present REST in
Section 2.1.1. In Section 2.1.2, we use REST as a theoretical framework to analyze
the problem of Web silos (see Limitation 1).

It is worth to note that there exists an official, standard specification of the
architecture of the Web [Jacobs 2004]. However, we choose to focus our discussion
on REST because (i) it defines the principles underlying the Web architecture, and
(ii) it allows us to keep the discussion at a higher level of abstraction and independent
of the Web.

2.1.1 Representational State Transfer

REST is an architectural style for distributed hypermedia systems that emphasizes
“scalability of component interactions, generality of interfaces, independent deploy-
ment of components, and intermediary components to reduce interaction latency,
enforce security, and encapsulate legacy systems” [Fielding 2000].

2.1.1.1 REST in a nutshell

In a system that conforms to the REST architectural style, henceforth called REST-
ful, components follow a request/response interaction model. Interaction between
components is data-driven: they exchange representations of resources by means
of a small set of generic methods with well-defined semantics. All resources have
uniform identifiers and can thus be referenced globally, independent of context. In-
teraction between components is stateless, which improves scalability and enables
the use of intermediary components.

A feature that is central to REST is having a uniform interface between com-
ponents. The purpose of having a uniform interface is to hide component-specific
implementation details. Components are thus loosely coupled, which allows them to
be deployed and to evolve independently from one another. This uniform interface is
achieved by means of uniform identifiers, standard methods, standard representation
formats, and hypermedia-driven interaction.

2.1.1.2 The uniform interface constraint

REST is defined as a coordinated set of architectural constraints. Applied as a whole,
these constraints induce the properties discussed above. In what follows, however, we
focus our discussion on a single constraint, that is the uniform interface constraint,
which is central to the REST architectural style, our approach and the rest of this
dissertation. The other REST constraints are described in detail in [Fielding 2000].

The uniform interface constraint is defined by four interface constraints, that
is [Fielding 2000]: identification of resources, manipulation of resources via repre-

2.1. The Architecture of the Web 11

sentations, self-descriptive messages, and hypermedia as the engine of application
state.

Identification of resources. Resources are key abstractions in REST, and
anything that is worth being referred to is a resource. Resources have uniform iden-
tifiers, and resource identifiers cannot be reassigned. For instance, Web resources are
identified by means of Uniform Resource Identifiers (URIs) [Berners-Lee 2005], and
the naming authority that assigns a URI is responsible for maintaining its semantic
validity over time.

It is worth to emphasize the importance of having globally identifiable resources.

Manipulation of resources via representations. A resource is an abstract
entity that can have multiple representations in different formats (e.g., HTML,
JSON, XML). This interface constraint states that a client does not have direct
access to resources, it can only send and receive representations of resources to and
from a server. The representation of a resource may represent the current state of a
resource or the desired state of the resource. The difference is made by the control
data within a message, which leads to the next interface constraint.

Self-descriptive messages. A message must include all necessary metadata for
describing its meaning, which includes methods and representation formats, a.k.a.
media types.

Methods used to invoke the message must be standard and agreeable between
the client, server and any intermediaries in between. For illustrative purposes, well-
known HTTP methods include [Fielding 2014c]:

• GET: retrieve a representation of the state of a resource;

• POST: create a new resource;

• PUT: replace the state of a resource using the representation enclosed in the
request payload; PUT may also be used to create a resource with a preferred
URI;

• DELETE: remove a resource;

• OPTIONS: return the methods allowed on a resource.

GET and OPTIONS are safe methods, i.e. they have no side effects. GET, PUT,
DELETE and OPTIONS are idempotent methods, meaning that multiple requests have
the same effect as a single request. Responses to GET requests are also cacheable.1

Hypermedia as the Engine of Application State (HATEOAS). The last
interface constraint states that interaction has to be driven by hypermedia. The
HATEOAS constraint is central to achieve a uniform interface.

1The response to a POST request may also be cacheable if the request contains explicit freshness
information, however POST caching is not widely implemented [Fielding 2014c]. This was one of
the initial drawbacks of WS-* Web services, which rely heavily on POST requests.

12 Chapter 2. A Hitchhiker’s Guide to the World Wide Web

To best illustrate hypermedia-driven interaction, we use as an example an HTML-
based application composed of multiple interlinked Web pages. This application is,
in fact, a finite state machine, in which each page represents a state and hyper-
links between pages represent transitions between states. Given an entry URI into
this application (i.e., the URI of one of the pages), a client (e.g., a browser) can
dereference the URI to retrieve an HTML representation of the page it identifies.
This action triggers a transition to a new state, and if this transition is completed
successfully the client can now choose from a new set of reachable states. The con-
trols required to transition to new states are encoded in the HTML representations
retrieved from the origin server.

Therefore, in each state of an application, a client can choose a next reachable
state from a selection of states retrieved from an origin server. The information
needed to transition to new states has to be conveyed to the client via hypermedia.
Given an entry URI, the client should not require any additional information besides
standard interaction protocols and a set of standard media types.

Hypermedia-driven interaction is what ensures connectivity on the Web and
enables crawling across websites. However, most existing Web application program-
ming interfaces (APIs) are non-hypermedia interfaces, which leads us to the problem
of Web silos (see Limitation 1).

2.1.2 The “out-of-band information” problem

From a technical perspective, we can now identify the root cause of having iso-
lated Web platforms (see Limitation 1): most existing Web platforms expose non-
hypermedia APIs that violate the uniform interface constraint [Fielding 2008, Webber 2010].
Common characteristics of these APIs include:

• the use of platform-specific identifiers for resources;

• the use of HTTP [Fielding 2014c] in a non-standard manner, such as creating
resources via HTTP GET or deleting resources via HTTP POST;

• the use of representations that expose platform-specific data models via generic
media types; for instance, most existing APIs produce JSON-based [Bray 2014]
representations that are processed based on information provided via the APIs’
documentation;

• they do not use hypermedia to drive interaction with clients, which implies
that clients typically have to hard-code URIs or URI templates.

Consequently, in order to interface with these APIs, clients must hard-code
platform-specific knowledge that is typically available via out-of-band documenta-
tion, and are thus tightly coupled to the platforms. Throughout the rest of this
dissertation, we generally refer to this platform heterogeneity problem as “the out-
of-band information problem”.

There are, in fact, three approaches commonly used for the development of Web
APIs [Webber 2010]:

2.2. The Web of People 13

• RPC over HTTP : these APIs typically expose a single endpoint, and clients
interact with the API via HTTP POST requests that enclose in the request body
all the information required to interpret an invoked operation; HTTP is there-
fore used only as a transport protocol;

• URI tunneling : clients typically interact with these APIs by encoding and
transmitting in the request URI an operation to be performed (e.g., via path
parameters) and any parameters required to perform the operation (e.g., via
query parameters); these APIs typically rely only on HTTP GET and HTTP POST
requests;

• CRUD over HTTP : clients typically interact with these APIs by exchanging
representations of resources using a Create, Read, Update, Delete (CRUD)
interaction pattern via HTTP POST, HTTP GET, HTTP PUT, and HTTP DELETE,
respectively; HTTP is thus used here as an application protocol.

The first two approaches therefore use a control-driven interaction pattern (i.e.,
the APIs are defined in terms of operations invoked remotely by clients). The latter
uses an approach that is somewhat closer to data-driven interaction, however clients
still have to hard-code operations defined via the APIs’ documentation as an (HTTP
method, URI template) tuple and a set of required parameters, which is essentially
more similar to a control-driven interaction pattern. It is worth to note that most
existing APIs generally use one of the last two approaches, and in many cases a mix
of the two.

Nevertheless, having a non-uniform, non-hypermedia API that is driven by
out-of-band information is not a problem in and of itself. The advantage of non-
hypermedia APIs is that they are simple and intuitive for most developers, which
motivates their success on the Web. Public Web APIs also tend to have a low change
frequency and generally use API versioning to ensure that existing clients using the
API do not break if the API changes. In the context of our work, however, non-
uniform APIs hinder the development of the envisioned IoT ecosystem. In order
to free things from Web silos, it is thus necessary to provide solutions to achieve
uniform interfaces for heterogenous APIs.

The out-of-band information problem is relevant to our research endeavor for two
reasons. First, it provides a better understanding of the integration challenges that
have to be addressed in order to integrate existing Web platforms into the envisioned
IoT ecosystem. Second, it helps identify a situation that should be avoided for the
development of new platforms that are to support this ecosystem.

2.2 The Web of People

The problem of Web silos is commonly known in the Social Web as the problem of
walled gardens [Halpin 2010]. In this section, we look for existing approaches and
technologies that could be useful to address this problem.

14 Chapter 2. A Hitchhiker’s Guide to the World Wide Web

We discuss the problem of walled gardens in more detail in Section 2.2.1. In Sec-
tion 2.2.2, we briefly summarize the vision for an open and distributed Social Web as
presented in the final report of the W3C Social Web Incubator Group [Halpin 2010].
We discuss enabling technologies that could help achieve that vision in Section 2.2.3.

2.2.1 The problem of walled gardens

The present-day Social Web is governed by a small number of social platforms with
high user adoption, such as Facebook or Twitter. A social platform often hosts a
user’s personal data and social graph, and provides a set of features to facilitate
and manage interactions with other users. It is common, however, that once a user
has entered his personal data on a social platform, he may access it only through
proprietary interfaces. His data is not portable, he cannot move it to a different
platform, and he cannot directly interact with users on other platforms. Users
who intend to use multiple social platforms thus have to create and manage social
graphs on each of these platforms. Advocates of an open Social Web use e-mail as
an analogy to highlight the drawbacks of this state of affairs: if one would be able
to use a given e-mail address to correspond only with users from the same e-mail
provider, the utility of e-mail services as a whole would be significantly less.

From a developer’s perspective, creating applications that run on multiple social
platforms is not straightforward. Like most Web APIs, the APIs of social platforms
are heterogeneous (see Section 2.1.2), and the functionality they support varies
greatly. For instance, while the Twitter API supports creating and deleting connec-
tions among users, the Facebook API does not. In lack of standard media types for
their particular application domain, social platforms produce representations that
expose platform-specific data models. Social platforms remain huge isolated data
silos. The final report of the W3C Social Web Incubator Group notes that “a truly
universal, open, and distributed Social Web architecture is needed” [Halpin 2010].

2.2.2 An open and distributed Social Web

In what follows, we summarize the vision of the W3C Social Web Incubator Group
for a standards-based, open and distributed Social Web [Halpin 2010]. Openness is
one of the general requirements for our socio-technical overlay, and thus this vision,
which is the result of a community effort, is highly relevant to our work. The focus
of our interpretation is on the core concepts, how they relate to one another and
how the open Social Web should work. We discuss enabling technologies in Section
2.2.3.

In this vision, a user may be “a person, organization, or other agent that par-
ticipates in online social interactions on the Web” [Halpin 2010]. It is worth noting
that this definition is generic enough to include things as well. A user is described
through attributes (e.g., name, e-mail), which are grouped in profiles. A user may
hold several such profiles, and the same attribute may be shared among multiple
profiles. Once an attribute is modified, it is synchronized across all profile instances

2.2. The Web of People 15

it is a part of. Some attributes may be dynamic by nature (e.g., geolocation).

Attributes and social connections within a profile may be distributed across
multiple social platforms. A social platform provides users with features that enable
them to build and manage their social graphs, publish or consume social media, or
use social apps. A social platform may be hosted by a third party, but it may also be
owned and controlled by a user. The democratization of the Social Web is central to
this vision: users may choose to run their own nodes and install social apps locally,
without having to make a compromise between the social platform they use and
the social apps that are available to them. In a standards-based Social Web, social
apps would be, at least to some extent, agnostic to the underlying social platform.
Therefore, an open Social Web would foster the development of social apps and
enable developers to focus on providing added value services to users rather than
on features for managing social structures.

The definition of a social connection in this vision is broad: they are “asso-
ciations between a profile and a resource (or group of resources)” [Halpin 2010].
Therefore, social connections may be established between users (e.g., friendship),
but also between users and social media items (e.g., likes). A social connection may
be uni-directional or bidirectional, and there may be multiple connections between
the same two users through several of their profiles. It is social platforms that sup-
port specific types of connections, while social apps “make, maintain and expand
these connections” [Halpin 2010].

One of the central characteristics of social connections in an open Social Web is
that they are portable. They are not confined to a particular platform and users
are not required to re-establish connections on a different platform.

Another concept we are interested in is the one of social group. Social groups
are defined as "named groups of resources" [Halpin 2010], such as a group of friends
or a favorite list of movies. Therefore, no strong assumptions are made about
groups. They could be membership-based groups, such as Facebook groups, but
also collections of users, such as Twitter lists.

In summary, in our interpretation, the open Social Web vision adds a social
overlay to the Web. This overlay is collaboratively built and maintained by social
platforms. Therefore, regardless of being decentralized (e.g., Diaspora) or central-
ized (e.g., Twitter, Facebook), social platforms need to be integrated in the same
social overlay to achieve this vision. Users may choose to use a social platform they
trust, but they may also run their own platform without being cut off from social
apps or users on other platforms. Users may also easily move their personal and
social data from one platform to another, without having to go through the cumber-
some process of re-entering it. Social apps are built on top of this social overlay. A
social app is not confined to one platform and it may even extend its functionality
across multiple platforms. In Part II, we build upon and extend this interpretation
to include things as first-class citizens of a socio-technical overlay for the WoT.

16 Chapter 2. A Hitchhiker’s Guide to the World Wide Web

2.2.3 Enabling technologies

Tim Berners-Lee argued that the technologies for building a distributed Social Web
are already available and proposed “socially aware cloud storage”, which separates
social applications from storage [Berners-Lee 2009]. This position is further devel-
oped in [Yeung 2009]. The W3C Social Web Incubator Group’s final report offers a
thorough overview of the Social Web in 2010 and technologies that might enable a
standards-based, open and distributed Social Web [Halpin 2010].2 In this section,
our intention is not to provide an exhaustive list of existing technologies that are
relevant to implementing this vision. The purpose of our discussion is to introduce
technologies, and their limitations, that are relevant to the rest of this thesis.

We search for solutions to three fundamental technical challenges raised by the
open Social Web vision. We begin with a critical security-related question: how can
users access resources, or grant access to resources, in an open and decentralized
Web? Web-scale mechanisms for enforcing security are essential. Second, how can
resources be effectively distributed across multiple social platforms? Answers to
these two questions should provide solutions to build a secure and open Web of
resources. The last question we are interested in is: what are existing approaches
to support interoperability among social platforms, thus avoiding the problem of
walled gardens?

2.2.3.1 Identification, authentication and authorization

In the open Social Web vision, users may access resources, or grant others access
to resources, regardless of the underlying social platform. A critical problem that
needs to be addressed is thus being able to identify and authenticate users, and to
authorize third-party access to resources.

HTTP provides a challenge-response authentication framework [Fielding 2014a]:
a server may challenge a client when a restricted resource is requested, and the
client may respond with authentication information. This simple framework, how-
ever, does not provide support for allowing third-party access to resources. The
client would have to share his credentials with the third party, which is obviously
inconvenient.

OAuth [Hardt 2012] addresses this issue by adding an authorization layer which
separates the client from the resource owner. The client may send an authorization
request to the owner of a restricted resource. If authorization is granted by the
owner, the client may then request an access token from an authorization server.
The access token typically includes specific attributes, such as scope or lifetime.
Using this access token, the client may then request the protected resource from
a resource server.3 When the access token becomes invalid or expires, it may be
refreshed.

2The report also covers several distributed social networking platforms, such as Diaspora
(http://diasporafoundation.org) or Appleseed (http://github.com/appleseedproj).

3The authorization server and the resource server may be one and the same.

2.2. The Web of People 17

OAuth is the de facto industry authorization framework. Most social platforms,
including Facebook and Twitter, use OAuth. However, there is a limitation which
is significant in the context of an open Social Web: OAuth was not designed with
a focus on interoperability. OAuth is a rich and highly extensible authorization
framework. The specification includes many optional components, while "a few
required components are partially or fully undefined". Section 1.8 of RFC 6749
notes that "without these components, clients must be manually and specifically
configured against a specific authorization server and resource server in order to
interoperate". For instance, a social thing would have to be manually configured
against a social platform in order to access a protected resource on that platform.

In February 2014, the OpenID Foundation launched OpenID Connect 1.0, which
adds an identity layer on top of OAuth 2.0 [Sakimura 2014]. Through OpenID
Connect, a client may verify the identity of a user via an authorization server that
authenticates the user. The server, also called an OpenID Provider (OP), securely
returns the result of the authentication to the client, also called a Relying Party
(RP). The RP may also obtain basic profile information about the user from the OP.
The major benefit brought by the OpenID Connect standard is that any compliant
RP may authenticate users through any compliant OP. Therefore, the specifications
create a decentralized single sign-on system, one in which users may choose from a
variety of OPs. It is worth mentioning that some social platforms, such as Facebook
or Twitter, are also identity providers running on OAuth, however they provide
proprietary services and do not interoperate with other platforms.

Another mechanism for identification and authentication is described by the
WebID Authentication Protocol [Sambra 2015b]. WebID makes use of TLS and
client-side certificates for verifying the identity of a client. When a client requests a
protected resource, the server asks for an X.509 certificate [Cooper 2008]. In addition
to a public key, this certificate also contains the user’s WebID, which is a URI
identifying the user. By dereferencing the URI, the server returns the WebID profile
document at the given location. This document also includes a public key. If this key
matches the public key in the certificate, it implies that the client who established
the TLS connection has the matching private key. Therefore, it is assumed that the
client was delegated by and is acting for the owner of that WebID. The WebID profile
uses the Friend-of-a-Friend (FOAF) vocabulary to describe basic profile information
about its owner (e.g., name, social connections).

The advantage of WebID is that it is fairly simple and efficient, for which reason
it caught some traction at W3C. For instance, Tim Berners-Lee proposed WebID as
the default single sign-on system for socially aware cloud storage [Berners-Lee 2009].
However, WebID is yet to become a W3C recommendation. The main drawback
is its user experience and potential for misuse: while the protocol itself works ele-
gantly and does not require passwords, it requires users to manage certificates on
the client-side, which provides a poor user experience in most browsers and has even
less support on mobile devices [Halpin 2010]. Without buy-in from browser manu-
facturers, further adoption of WebID seems to stall. In addition, WebID tends to tie
users to browsers, and thus to the devices they use. Technical workarounds for these

18 Chapter 2. A Hitchhiker’s Guide to the World Wide Web

issue may be conceived with additional cloud services, but this might cost WebID
any edge over alternatives such as OpenID Connect. Nonetheless, while WebID is
still to provide a good user experience for people, this would not be a problem for
social things. Therefore, we believe WebID is a good candidate for verifying the
identity of things in the SWoT. Furthermore, it could also work in conjunction with
OpenID Connect, which might be a better choice for human users.

2.2.3.2 Profiles and social media

Global identification mechanisms and single sign-on systems enable users to securely
access and share resources on the Web. Another central aspect of the open Social
Web vision is distributing profiles and social media across social platforms and apps.
In this section, we cover some vocabularies that may serve this purpose. We discuss
semantics on the Web in Section 2.3.

Friend-of-a-Friend (FOAF) [Brickley 2014] is a vocabulary for describing social
networks. FOAF defines concepts and properties that may be used to describe
people, groups, organizations and other entities, and how they relate to one another.
For instance, a FOAF description may include basic profile information about a
person (e.g., name, e-mail, gender) and uni-directional social connections to other
known persons. These descriptions may be embedded in HTML pages or published
as standalone documents. Anyone may publish FOAF descriptions. Furthermore,
given that FOAF uses URIs to identify resources, any description may link to other
resources on the Web, thus building a Web-scale distributed social graph.

The FOAF project was launched in 20004, before the rise of the Social Web.
Its main use case at the time was publishing descriptions on personal Web pages.
While FOAF does not provide functionality in itself, it provides a standard way of
describing social networks. There are several social platforms that generate FOAF
profiles and some extensions exist for the ones that do not [Halpin 2010]. It is im-
portant to note that FOAF provides a simple and generic model for social networks
of people, and cannot be used to describe social connections with or among things.
However, FOAF may be easily extended and used alongside other vocabularies.

One such vocabulary is Semantically-Interlinked Online Communities (SIOC)
[Bojars 2010]. Many terms in SIOC are defined with reference to FOAF. While
FOAF describes networks of people, SIOC describes the content they generate on
the Web. Content is described in terms of forums and threads, with posts that
may reply to previous messages. Content is created through user accounts that
may enact different roles, for instance in forums. One relation modeled through
SIOC, which seems especially important in the SWoT, is the hosting of data. In
addition, extensions of the core module allow attaching access rights to roles and
tags/categories to posts.

Similar to FOAF, the SIOC project was launched in the early days of the Social
Web (2004).5 While its simple and generic model enables the structuring of user-

4http://www.foaf-project.org/, Accessed: 04.11.2015
5http://sioc-project.org/, Accessed: 04.11.2015

2.2. The Web of People 19

generated content, the vocabulary may also be extended further to describe social
media content in a fashion closer to the one of modern social platforms. It is worth
to note that SIOC is one of the core vocabularies used in Drupal 7.6

2.2.3.3 Interoperability

The problem of walled gardens reflects on both users and developers: users are
confined to one social platform or the other, and developers are required to integrate
their social apps with each individual platform. In the open Social Web vision, users
on different social platforms may interact unrestricted, while developers build social
apps that are decoupled from the underlying social overlay and whose functionality
may extend across multiple social platforms. To achieve this vision, it is necessary
for social platforms to interoperate. Profiles and social media vocabularies, such
as FOAF and SIOC, provide model-level agreement. Going a step further, some
API-level interoperability is also required.

OpenSocial7 is an open standard that tackles the problem of decoupling appli-
cations from social platforms. It provides a collection of JavaScript APIs that offer
standard access to social data. Any compliant social app, also referred to as a gad-
get, may run on any compliant social website, also called a container. The standard
covers a broad set of functionalities, such as retrieving information about a person
or list of persons, creating and deleting connections, publishing and consuming so-
cial media items etc. Gadgets, however, run within the context of a container. For
instance, while running a gadget on one social platform, the user cannot interact
with friends on a different platform.

OpenSocial was launched in 2007 by Google, together with MySpace and other
social platforms.8 Security issues with the early release were not very encouraging for
developers.9,10 OpenSocial has yet to see wide adoption. As of January 1st, 2015, the
OpenSocial standardization effort moved to the W3C Social Web Working Group.11

Following our discussion, we conclude that the technologies for building a standards-
based, open and distributed Social Web are now available. However, the problem
of walled gardens goes well beyond the technical challenges. The lack of standards
that would guide the development of the Social Web has lead to the rise of a small
number of closed platforms with huge user adoption. Furthermore, each of the
established social platforms appears to hold monopoly in a well defined category:
Facebook as a general-purpose social network, LinkedIn for professional use, Twit-
ter for disseminating information etc. There seems to be little incentive for existing

6https://www.drupal.org/project/sioc, Accessed: 09.11.2015.
7http://opensocial.github.io/spec/2.5.1/Core-API-Server.xml, Accessed: 09.11.2015.
8http://googlepress.blogspot.fr/2007/11/google-launches-opensocial-to-spread 01.html, Ac-

cessed: 09.11.2015.
9http://techcrunch.com/2007/11/02/first-opensocial-application-hacked-within-45-minutes/,

Accessed: 09.11.2015.
10http://techcrunch.com/2007/11/05/opensocial-hacked-again/, Accessed: 09.11.2015.
11http://www.w3.org/blog/2014/12/opensocial-foundation-moves-standards-work-to-w3c-

social-web-activity/, Accessed: 09.11.2015.

20 Chapter 2. A Hitchhiker’s Guide to the World Wide Web

social platforms to tear down the walls around their users. But while there might
be little change foreseen in the Social Web landscape, with the right tools already
available and an estimated 25 billion connected things by 202012, openness is an
essential requirement for achieving the full potential of a Social Web of Things.

2.3 The Web for Machines

In his seminal 2001 paper [Berners-Lee 2001], Tim Berners-Lee presents a vision for
a future Web in which agents assist people with everyday tasks. Berners-Lee called
this vision the Semantic Web. The challenge is, however, that the Web looks very
different for a machine than it does for a human.

In order to consume Web content in a reliable fashion, machines need structured
data (see Section 2.3.1). Going a step further, if they are also to autonomously
reason upon Web content, they need semantic data (see Section 2.3.2). Finally, if
they are also to manipulate Web content, machines need to be able to read and write
semantic data to the Web in a reliable fashion (see Section 2.3.3). In this section,
we look at existing technologies that could enable things to autonomously produce
and consume information in a Web-based ecosystem.

2.3.1 Adding structure to information

The standard for adding metadata to the Web is the Resource Description Frame-
work (RDF) [Cyganiak 2014]. RDF provides a simple data model to describe re-
sources through statements, with several serialization formats being available. Orig-
inally designed to describe Web resources, RDF is domain-independent and may be
used to represent any knowledge that can be encoded as a graph.

An RDF triple is a structure of the form <subject> <predicate> <object>,
a.k.a. a triple. The subject is either an IRI or a blank node, the predicate is an IRI,
and the object is an IRI, a blank node, or a literal, that is a basic value, such as a
string, number or a date. Multiple RDF triples form an RDF graph. Data stored
in RDF graphs can be retrieved and manipulated with RDF query languages, such
as SPARQL.

RDF has several properties we are particularly interested in. It is a graph-based
data model. Merging sets of triples is a cheap operation. Furthermore, IRIs enable
the representation of distributed graphs in RDF, but also the interlinking of various
datasets and thus cross-dataset queries.

2.3.2 Web ontologies

RDF adds metadata to resources. Metadata by itself, however, does not add seman-
tic information. Going a step further, ontologies provide agreement on the semantics
of IRIs and the structure of the metadata. It is this agreement that enables knowl-
edge exchange across applications.

12http://www.gartner.com/newsroom/id/2905717, Accessed: 26.01.2015.

2.3. The Web for Machines 21

In a widely accepted definition, an ontology is “a specification of a conceptual-
ization” [Bruber 1993]. In other words, an ontology provides a formal description
of concepts and how they relate to one another. Breslin et. al. point out that most
approaches to ontology modeling define [Breslin 2009]:

• a distinction between classes and instances, where a class is a set of instances;
a binary relation denotes that an instance is an element of a class, and there
is usually a subclass partial order over the set of classes;

• a set of properties, also called attributes, as binary relations usually having a
certain domain and range.

RDFS [Brickley 2004] is a vocabulary that defines primitives to describe classes,
instances and properties. There are several well known vocabularies originally de-
fined in RDFS, such as FOAF (cf. Section 2.2.3.2). The expressive power of RDFS,
however, is limited. For instance, RDFS cannot be used to say that a property is
transitive. More expressive semantic modeling of RDF data is provided by OWL.

OWL [W3C OWL Working Group 2012] is an ontology language with formally
defined semantics based on Description Logics. OWL provides axioms to define
characteristics and constraints of classes and properties, such as any person has
a mother and the maternal relationship may exist only between persons. OWL
has also an RDF vocabulary and may be used in conjunction with RDFS. Several
sublanguages of OWL are available, with different computational properties.

2.3.3 Reading/Writing Linked Data

In what follows, we discuss in detail the Linked Data Platform (LDP) to gain
greater insight into the interaction patterns it promotes. The LDP defines a pro-
tocol for reading and writing linked data [Berners-Lee 2006] on the Web. It pro-
vides conventions for information resources [Jacobs 2004] and rules for HTTP op-
erations [Fielding 2014b] on those resources.

2.3.3.1 LDP Resources and LDP Containers

LDP Resources [Speicher 2015] are information resources that conform to the life-
cycle patterns and conventions defined by the LDP. An LDP server [Speicher 2015]
may manage two types of LDP Resources: those whose state is fully represented as
an RDF graph [Cyganiak 2014], referred to as LDP RDF Sources [Speicher 2015],
and those whose state is represented in any other format, such as HTML documents
and binary files, referred to as LDP Non-RDF Sources [Speicher 2015].

A specific type of LDP RDF Sources are LDP Containers [Speicher 2015], which
represent collections of LDP Resources. LDP Containers are used to organize the
overall space of information and manage the lifecycle of LDP Resources.

22 Chapter 2. A Hitchhiker’s Guide to the World Wide Web

2.3.3.2 HTTP operations

When serving LDP Resources, the LDP requires conformant servers to support
several features that are otherwise optional in HTTP.

The HTTP POST, PUT and DELETE methods [Fielding 2014c], and the HTTP
PATCHmethod [Dusseault 2010], are optional. If LDP servers support these methods,
the LDP imposes new requirements in addition to existing standards. We discuss
these additions briefly in what follows.

Conforming LDP clients should create LDP Resources via POST requests to
known LDP Containers. LDP servers may allow clients to suggest the URI of the
resource to be created using the Slug header field [Gregorio 2007]. LDP servers may
also accept resource creation via PUT requests. When a resource is created success-
fully, LDP servers are required to add the appropriate containment and membership
triples (see [Speicher 2015] for more details), and are required to send an HTTP re-
sponse with status code 201 Created and the Location header field [Fielding 2014c]
set to the URL of the created resource.

LDP severs may support the HTTP PUT method for updating LDP Resources.
LDP servers are required to replace the entire persistent state of the resource with
the entity enclosed in the request body.

LDP servers may support the HTTP DELETEmethod for deleting LDP Resources.
When deleting a resource in an LDP Container, LDP servers are required to remove
corresponding containment and membership triples.

LDP servers are required to support the HTTP GET, HEAD and OPTIONS meth-
ods [Fielding 2014c] for all LDP Resources. In addition, LDP servers are required to
include the following header fields in response to HTTP GET and OPTIONS requests:

• the HTTP method tokens supported for the requested resource in the HTTP
response header Allow;

• if the HTTP POST method [Fielding 2014c] is supported for the requested re-
source, include accepted representation formats in the HTTP response header
Accept-Post [Speicher 2015];

• if the HTTP PATCH method [Dusseault 2010] is supported for the requested re-
source, include accepted representation formats in the HTTP response header
Accept-Patch [Dusseault 2010].

It is worth to note that, per RFC 2731, conforming HTTP servers should include
the same header fields in response to a HEAD request as they would in response to a
GET request. Consequently, an LDP server should include the above header fields in
response to a HEAD request as well.

The LDP recommends clients [Speicher 2015] to create resources via POST to a
known LDP Container. LDP servers are required to respond to a successful with sta-
tus code 201 Created and to include the Location response header [Fielding 2014c]
with the URL of the newly created resource.

2.4. The Web of Things 23

In summary of our discussion, it is worth to note that the LDP promotes data-
driven interaction and it enforces the HATEOAS constraint (see Section 2.1.1)
via multiple normative requirements. We consider the LDP could be a suitable
standard-compliant candidate for interaction in the envisioned IoT ecosystem.

2.4 The Web of Things

In this section, we discuss the integration of physical devices into a Web of Things
(WoT), the motivation behind the WoT, how it relates to the Internet of Things
(IoT), and recent developments in this area.

2.4.1 The need for an application architecture

Many definitions have been given for the IoT [Atzori 2010], however the underly-
ing vision remains the same: the IoT integrates devices and everyday objects in a
ubiquitous network. Nevertheless, while things become connected at the network
layer, they remain isolated at the application layer. Given the envisioned diversity
of connected things, it is unrealistic to imagine a common middleware for all things.
To address this problem, some researchers turned to the Web as an integration plat-
form for things [Kindberg 2002, Wilde 2007, Guinard 2010b]. The emerging Web of
Things (WoT) is envisioned as an application architecture for the IoT.

The WoT vision is rapidly gaining ground. In June 2014, Dave Raggett, who had
already coined the term Ubiquitous Web at W3C, has hosted the W3C Workshop on
the Web of Things13 together with Siemens. One of the outcomes of the workshop
was the creation of the W3C Web of Things Interest Group14. Siemens has also
recently created a WoT research group.15 In October 2014, Google announced its
Physical Web project16, followed by a call for research proposals for an Open Web
of Things in December 201417.

2.4.2 A resource-oriented architecture

Guinard et. al. [Guinard 2010b] proposed a resource-oriented architecture for the
WoT. This proposal is elaborated as a layered architecture for the WoT in Guinard’s
Ph.D. dissertation [Guinard 2011a], structured around four layers:

1. Accessibility layer: deals with integrating things into the Web;

2. Findability layer: deals with searching for relevant services in the WoT;

3. Sharing layer: deals with managing access to things;
13http://www.w3.org/2014/02/wot/, Accessed: 08.11.2015
14http://www.w3.org/2014/09/wot-ig-charter.html, Accessed: 08.11.2015
15http://www.usa.siemens.com/en/about us/research/web-of-things.htm, Accessed: 09.11.2015.
16http://techcrunch.com/2014/10/02/google-the-physical-web/, Accessed: 08.11.2015
17http://googleresearch.blogspot.fr/2014/12/call-for-research-proposals-to.html, Accessed:

08.11.2015

24 Chapter 2. A Hitchhiker’s Guide to the World Wide Web

4. Composition layer: deals with integrating services across smart things, and
thus supports composite WoT applications.

In this section, we mostly focus on the Accessibility layer, which we consider
to be the essence of the WoT architecture. In Chapter 3, we discuss emerging
paradigms and platforms for the WoT, which could be fitted along the remaining
three layers.

Integrating things as first-class entities of the Web boils down to two main issues:
designing RESTful things and placing them on the Web.

2.4.2.1 Designing RESTful things

In what follows, we discuss in further detail applying the uniform interface con-
straint (cf. Section 2.1.1) to design RESTful things. This discussion is based
on [Guinard 2010b].

Identification of resources

In the context of the WoT, a resource is any component of an IoT device or ap-
plication worth being uniquely identified [Guinard 2011a]. In compliance with the
REST constraints, each resource is uniquely identified through a URI. For instance,
the temperature of a thermostat might be identified through the following URI:
http://<DOMAIN>:<PORT>/devices/thermostats/<DEVICE ID>/temperature.

Resource representations

Guinard [Guinard 2011a] suggests that things should support at least HTML repre-
sentations for human-to-machine interactions and JSON representations for machine-
to-machine interactions. JSON was chosen over XML for being less verbose and thus
better suited for resource-constrained devices.

Operations

Guinard [Guinard 2011a] suggests that a RESTful thing should support the HTTP
verbs as basic operations, such as:

• GET for reading the temperature of the thermostat;

• PUT for writing the temperature of the thermostat;

• POST for creating new resources, such as a rule that increases the temperature
to a given threshold after 6 a.m.;

• DELETE for deleting resources, such as the previous rule.

Not all operations will be available for all resources, and thus Guinard [Guinard 2011a]
suggests to support HTTP OPTIONS for retrieving the list of available operations for
a given resource.

2.5. Summary 25

HATEOAS

To satisfy the HATEOAS constraint (cf. Section 2.1.1), Guinard [Guinard 2011a]
suggests that the representation of a resource should link to its parent, children
and other related resources. Well-designed, hierarchical URIs help support this
constraint as well. This recommendation encourages the development of a connected
and crawlable WoT.

Implementing the above guidelines ensures that things are designed in a resource-
oriented fashion, which is a first step towards their integration into the Web. The
next step is to place things on the Web.

2.4.2.2 Web-enabling things

Two strategies are suggested for integrating things into the Web [Guinard 2010b]:
either indirectly through the use of smart gateways acting as reverse proxies, or
directly via embedded Web servers.

A smart gateway is essentially a Web server that shields resource-constrained
devices and abstracts them through a RESTful API. Devices can use dedicated
low-power protocols to talk to the smart gateway, such as Zigbee, Bluetooth Low
Energy etc. Smart gateways can therefore provide an easy solution for integrating
constrained devices into the Web. The disadvantage of this integration strategy,
however, is that smart gateways have to be manually extended to support new
protocols and things, and they are domain-specific intermediary components and
thus do not conform to the end-to-end arguments of the Internet [Blumenthal 2001,
Kovatsch 2015].

The direct integration of constrained devices into the Web via HTTP has already
been proven to be feasible [Hui 2008, Dunkels 2009]. Going a step further, the stan-
dardization of the Constrained Application Protocol (CoAP) [Shelby 2014a] bridges
the gap to directly integrate severely resource-constrained devices into the Web, that
is devices with as little as 100 KiB of ROM and 10 KiB of RAM [Kovatsch 2015],
also referred to as Class 1 devices [Bormann 2014].

Furthermore, CoAP provides features that are tailored for interaction in the
IoT, such as publish/subscribe for observable resources, multicast communication,
or alternative transports (e.g., SMS) [Shelby 2014a].

2.5 Summary

In this chapter, we discussed the principles underlying the Web architecture, we
defined in further detail the problem of Web silos, and we discussed several facets
of the Web that are relevant to our work. If the envisioned IoT ecosystem is to be
a true global ecosystem, it is desirable to preserve the properties of the Web.

In Section 2.1, we discussed in detail one of the core tenets of the REST ar-
chitectural style and we defined the “out-of-band information” problem. The latter
provides greater insight into one of the main challenges we have to be address in

26 Chapter 2. A Hitchhiker’s Guide to the World Wide Web

order to free things from Web silos. That is, we must provide solutions to achieve
uniform interfaces for heterogeneous APIs. To the best of our knowledge, there
are no proposals that would enable the structured integration of non-uniform, non-
hypermedia APIs into a global, hypermedia-driven environment.

In Section 2.2, we discussed the problem of Web silos in the context of the Social
Web in search of solutions and technologies that could be useful to bring about
the envisioned Social Web of Things (SWoT). Our investigation indicates that the
technical solutions are already available. What is needed is an architectural model
that would guide the development of the SWoT.

In Section 2.3, we touched on technologies that things could use to consume and
produce content on the Web in a reliable fashion, and we found the LDP to be a
suitable candidate for interaction in the envisioned IoT ecosystem. In Section 2.4,
we discussed recent developments that enable the integration of resource-constrained
devices into the Web. In the following chapter, we continue our discussion with an
overview of emerging paradigms in the WoT.

Chapter 3

Emerging Paradigms in the
Web of Things

Contents
3.1 The Web of Things in Practice 28

3.1.1 WoT devices . 28

3.1.2 WoT platforms . 29

3.1.3 Interoperability in the WoT 30

3.2 Interacting with Physical Things 33

3.2.1 Local interaction . 33

3.2.2 Remote interaction . 35

3.3 Physical Mashups . 37

3.3.1 Process-driven composition 37

3.3.2 Goal-driven composition . 38

3.4 Social Aspects in the WoT . 39

3.4.1 Platforms and applications 39

3.4.2 Social things . 40

3.5 Summary . 42

In the previous chapter, we presented current approaches for the integration of
physical devices into the Web, that is the so-called Web of Things (WoT). In this
chapter, we continue our investigation with a survey of abstractions, models and
mechanisms proposed in WoT-related research. The purpose of this survey is to
better identify and define the scope of the limitations that motivate our work.

In Section 3.1, we begin our discussion with an overview of current practices
for integrating things into the Web. This discussion complements the one in the
previous chapter and provides a better insight into how the WoT is currently being
implemented. In this section, we also revisit the problem of Web silos (cf. Limita-
tion 1) in the context of the WoT, and discuss approaches to achieve platform-level
interoperability in the WoT. It is worth to note that discoverability in the WoT
(cf. Limitation 2) is also related to the problem of Web silos: as long as things are
confined to silos, they are not discoverable from the outside world.

In Section 3.2, we survey paradigms for interaction between people and things
(cf Limitation 4). In Section 3.3, we survey approaches for integrating functionality

28 Chapter 3. Emerging Paradigms in the Web of Things

across things in IoT mashups (cf. Limitation 3). In Section 3.4, we finalize our
investigation by providing a survey of approaches that apply social concepts to the
WoT and ubiquitous computing in general.

3.1 The Web of Things in Practice

In Section 2.4, we have presented a resource-oriented approach to integrate physical
devices into the Web, which represents the widely held view in the WoT research
community. In this section, we turn away from the academic field to present how the
WoT is currently being implemented in the industry. The purpose of this incursion is
to show that, in practice, the WoT is already evolving towards large silos of things, a
fact that has already raised concerns in the research community [Blackstock 2014a].
This evolution further motivates our work, per Limitation 1.

In Section 3.1.1, we look at commercial IoT devices and analyze how they are
being integrated into the Web. In Section 3.1.2, we discuss existing cloud-based IoT
services and their approach to leverage the Web for the benefit of IoT developers.
Following this discussions, in Section 3.1.3 we present current standardization efforts
to enable interoperability in the WoT.

It is worth to note that we label as a WoT device or a WoT platform any device
or platform that relies on interaction with other things via the Web.

3.1.1 WoT devices

Most present-day IoT consumer products are exposed to the Web via cloud services
developed and maintained by their manufacturers. These cloud services usually
provide a set of APIs, for instance, to read/write the state of a thing and subscribe
to events. Some things implement the TCP/IP stack and can directly communicate
with the cloud in a secure fashion, such as the WiFi enabled Nest thermostat1, while
non-IP devices rely on gateways to gain Internet connectivity, thus similar to the
indirect integration approach presented in Section 2.4.2.2.

For instance, most wearable devices, such as wristbands or smart watches, that
are usually resource-constrained and move around with the user are tethered to
smartphones. The smartphone typically runs a dedicated application that handles
communication to and from the cloud. Examples include fitness tracker series Jaw-
bone UP2 and Fitbit Flex3. Third-party systems can then interface with the cloud’s
RESTful APIs. For instance, retrieving a representation of the timezone of a Jaw-
bone UP user may be performed via an HTTP GET request at the endpoint:
https://jawbone.com/nudge/api/v.1.1/users/<user id>/timezone.4

Non-IP devices that generally do not change their location often, such as smart
light bulbs, are typically connected via bridges. Some bridges function similarly

1http://www.nest.com/thermostat/, Accessed: 12.11.2015.
2http://www.jawbone.com/up, Accessed: 12.11.2015.
3http://www.fitbit.com/fr/flex, Accessed: 12.11.2015.
4https://jawbone.com/up/developer/endpoints, Accessed: 12.11.2015.

3.1. The Web of Things in Practice 29

to the smart gateways described in Section 2.4.2.2: they communicate with devices
using low-power protocols and abstract them through a set of Web APIs. The bridge
itself is usually not accessible to third-parties outside the user’s private network,
which means that applications run on the local network. Running applications
locally presents the advantage of increased responsiveness, however the bridge may
also be reflected by the manufacturer’s cloud service to enable secure remote access.
The Philips Hue5 smart lighting system is one such example: a bridge communicates
with the light bulbs via ZigBee Light Link6 and exposes a set of RESTful APIs for
reading/writing the states of lights and other abstract, non-physical resources, such
as groups of light bulbs or schedules. The bridge provides unique URIs for all
resources. For instance, a user may turn on light bulb 1 by sending a PUT request
with the JSON payload { "on": true } to the local endpoint http://<bridge
ip address>/api/<user id>/lights/1/state.7

The main drawback of the above integration methods is that things are typically
accessible via dedicated applications and heterogeneous APIs (see Section 2.1.2),
which hinders interoperability in the WoT. It is also worth to note that most manu-
facturers of non-IP products do not currently provide APIs for direct access to their
devices via low-power protocols, such as Bluetooth or ZigBee. The implication is
that users will have to install dedicated components, such as smartphone applica-
tions or bridges, for each manufacturer. One of the few exceptions is Parrot, who
also provide a set of Bluetooth APIs for their connected flower pots.8

3.1.2 WoT platforms

To address the above heterogeneity problem, home hubs abstract heterogeneous
household appliances and personal devices behind a single application, which is used
by people to manage things via the home hub, and a single API, which is used by
developers to build applications. This abstraction simplifies application development
for home automation scenarios, which in turn provides end-users with a wider variety
of applications or, if so they choose, a single application to control all their devices.
SmartThings9 is one well known home hub manufacturer. SmartThings provides
a taxonomy of capabilities for supported devices. Using this taxonomy, developers
can create applications in the form of Groovy10 scripts that run in a sandboxed
environment. Users explicitly authorize access to a list of devices at installation time.
SmartThings applications can also expose a set of Web APIs accessible to external
systems via the SmartThings cloud. Developers have the flexibility to design their
own endpoints and route them to appropriate handlers within the context of their

5http://www.meethue.com/, Accessed: 12.11.2015.
6http://www.zigbee.org/, Accessed: 12.11.2015.
7http://www.developers.meethue.com/documentation/core-concepts/, Accessed: 12.11.2015.
8http://flowerpowerdev.parrot.com/projects/flower-power-bluetooth-apis/, Ac-

cessed: 20.11.2015.
9http://www.smarthings.com, Accessed: 12.11.2015.

10http://groovy.codehaus.org, Accessed: 12.11.2015.

30 Chapter 3. Emerging Paradigms in the Web of Things

application. This feature allows greater flexibility for developers to extend the home
hub platform, however it also increases heterogeneity in the WoT without standard
guidelines for designing the APIs.

Home hubs are platforms that target household appliances and personal devices.
In a more generic definition, aWoT platform can be defined as a system that provides
“a repository for things (data and metadata) and a set of APIs for accessing and
using things” [Blackstock 2014a]. Following this definition, Jawbone, Fitbit and
Philips are IoT companies that have developed their own WoT platforms for the
products they offer (see Section 3.1.1).

Xively11, Evrythng12 and ThingSpeak13 are part of a new wave of IoT companies
that focus on providing infrastructure as a service to developers and others willing to
outsource the effort of developing and maintaining their own WoT platform. Other
companies, such as ThingWorx14 and AirVantage15, offer end-to-end solutions for
industrial IoT. In order to accommodate heterogeneous physical devices, each plat-
form provides abstractions for things and the data they produce, such as channels or
digital profiles. This results in an interoperability gain, within the boundaries of the
WoT platform, and thus may foster the development of IoT applications for their
customers. However, these WoT platforms do not usually interoperate with one an-
other. Furthermore, each competing business naturally aims at dominating its IoT
market segment and thus to create the larger “island of devices” [Blackstock 2013].

Following our discussion thus far, it appears that the WoT evolves towards a
platform-centric model [Blackstock 2014a]. Existing WoT platforms are hetero-
geneous: they use different models, representations, authentication schemes. To
achieve the vision of a global ubiquitous network of things and services, it is desir-
able to avoid replicating the problem of walled gardens in the WoT (cf. Section 2.2).
To avoid WoT silos, it is necessary to achieve interoperability not only at the appli-
cation layer, but also at the platform level.

In the following, we present an overview of the most prominent efforts to address
interoperability issues in the IoT, and in particular in a platform-centric WoT.

3.1.3 Interoperability in the WoT

Interoperability requires standardization, and several efforts are underway towards
standardizing the IoT/WoT. A comprehensive survey of IETF standardization in the
IoT is available in [Ishaq 2013]. Most notably for the Web community is the work
done by the IETF Constrained RESTful Environments (CoRE) working group16,
which aims at providing a framework for deploying resource-oriented applications
on constrained IP networks. Important results of this working group include the

11http://www.xively.com, Accessed: 21.11.2015.
12http://www.evrythng.com, Accessed: 21.11.2015.
13http://www.thingspeak.com, Accessed: 21.11.2015.
14http://www.thingworx.com, Accessed: 21.11.2015.
15http://www.airvantage.net, Accessed: 21.11.2015.
16http://datatracker.ietf.org/wg/core/, Accessed: 21.11.2015.

3.1. The Web of Things in Practice 31

Constrained Application Protocol (CoAP) [Shelby 2014b] and related initiatives (see
Section 2.4.2.2).

A more comprehensive approach to IoT interoperability is proposed by the Inter-
net of Things - Architecture (IoT-A) project17, an impressive standardization effort
in the context of the Seventh Framework Programme of the European Commission
(FP7). IoT-A provides an architectural reference model for the IoT, which also ad-
dresses issues such as resource discovery and lookup or machine-to-machine (M2M)
interfaces.

In 2014, the W3C has created a WoT Interest Group, which aims to provide,
among others, use cases and requirements for the WoT, a standard high-level archi-
tecture, guidelines and best practices.18 Other WoT-related initiatives for exposing
sensors to the Web are undertaken by the Open Geospatial Consortium19. It is also
worth to note that, in December 2014, Google launched a call for research proposals
for an Open Web of Things.20

While the above organizations are working on comprehensive standards for IoT
interoperability, some individual research groups are investigating ways in which
WoT platform developers can already begin to address emerging interoperability
issues. These initiatives may help standardization efforts to better define require-
ments and evaluate possible solutions for interoperability in the IoT. In what follows,
we discuss in some detail one such approach proposed in the WoT research com-
munity [Blackstock 2014a]. To the best of our knowledge, this is currently the only
proposal for a progressive strategy to achieve platform-level interoperability in the
WoT.

3.1.3.1 A four stage path to hub-centric interoperability

Exposing things to the Web in a resource-oriented fashion already provides some de-
gree of interoperability in the IoT and facilitates the development of service mashups
across heterogeneous things (see Section 3.3). Still, developers are required to build
adapters for the APIs of each individual thing or WoT platform. Blackstock et Lea
proposed four stages towards achieving greater interoperability in a platform-centric
WoT [Blackstock 2013]:

• WoT Core: IoT platforms expose things to the Web in a resource-oriented
fashion, thus building a WoT;

• WoT Model : platforms agree on basic models, such as what things and data
are managed; at this stage, developers may use a common set of APIs to
retrieve a high-level catalogue of things contained on a given platform;

17http://www.iot-a.eu/, Accessed: 21.11.2015.
18http://www.w3.org/2014/09/wot-ig-charter.html, Accessed: 21.11.2015.
19http://www.ogcnetwork.net/IoT/, Accessed: 21.11.2015.
20http://googleresearch.blogspot.com/2014/12/call-for-research-proposals-to.html, Ac-

cessed: 08.11.2015.

32 Chapter 3. Emerging Paradigms in the Web of Things

• WoT Hub: at the next stage, platforms agree on implementation issues, such as
security mechanisms, representation formats for accessing things in a generic
fashion;

• WoT Profiles: to achieve a deeper integration, agreement on the semantics of
things and the data they produce is necessary; at this final stage, platforms
can directly link to and communicate with one another.

Platforms that achieve higher stages may thus be integrated more deeply with
other interoperable platforms, facilitating the development of cross-platform appli-
cations.

It is worth to note that this strategy for platform-level interoperability can be
used to achieve uniform interfaces for WoT platforms in a progressive manner, that
is by allowing developers to balance platform design and implementation auton-
omy versus integration behind a standard interface. However, it does not enforce
cross-platform interactions, which are necessary to enable discoverability (cf. Limi-
tation 2).

3.1.3.2 HyperCat

To implement the strategy presented previously, Blackstock et Lea introduce Hy-
perCat21, a JSON-based [Bray 2014] hypermedia specification for representing and
querying catalogues of resources [Blackstock 2014a].

Any HyperCat platform provides a top-level catalogue, which contains resources
and may link to other catalogues. Catalogues and resources are denoted by URIs
and described by lists of RDF-like triples, using a limited set of relations provided
by HyperCat. The specifications also describe a set of operations, implemented
as HTTP requests, to insert, update and delete catalogue items. Simple search
queries may also be supported, in which case catalogues are required to advertise
the operation. To address security issues, HyperCat specifies a simple authentication
scheme. HyperCat was developed in the context of a UK government funded project
focused on creating an open IoT ecosystem. Eight industry led sub-projects were
tasked to develop domain-specific platforms for city transportation, smart homes,
highways etc.

It is worth to note that the HyperCat specifications are quite similar to the
Linked Data Platform (LDP) specifications [Speicher 2015] (cf. Section 2.3.3). Both
HyperCat and LDP rely on two main abstractions: containers and resources, where
containers are resources that may contain other resources. Resources can be de-
scribed through triples. While LDP uses standard RDF serialization formats, such
as Turtle [Beckett 2008] or JSON-LD [Sporny 2014], HyperCat uses JSON-based
representations [Bray 2014]. Both specifications define operations, implemented as
HTTP requests, for creating, updating or deleting resources in containers. LDP
is a richer specification in terms of container types and operations. In addition,
HyperCat specifies a simple security mechanism and a search operation. Therefore,

21http://wiki.1248.io/doku.php?id=hypercat, Accessed: 21.11.2015.

3.2. Interacting with Physical Things 33

in our view, HyperCat can be defined by extending the LDP with WoT-specific
vocabularies and operations.

Once again, we conclude that the LDP, which is a W3C recommendation, may be
a suitable candidate for a standard-compliant interaction in the WoT (cf. discussion
in Section 2.3.3).

3.2 Interacting with Physical Things

In the previous section, we surveyed approaches currently used in practice to in-
tegrate IoT devices into the WoT. Once physical devices and everyday objects are
integrated into the Web as resources, people can directly access them using regu-
lar Web browsers. Alternatively, as noted in Section 3.1.1, many present-day IoT
consumer products provide smartphone applications. Using dedicated Web/mobile
applications for each individual device or task at hand, however, is not reason-
able. An important challenge in ubiquitous computing is enabling people to man-
age, search and interact with large numbers of heterogeneous things [Randall 2003,
Formo 2012, Takayama 2012], but also to coordinate and keep track of interactions
between collaborative things [Brush 2011, Formo 2012, Mayer 2014a].

In this section, we present existing approaches to enable interaction between
people and things. We survey such mechanisms in relation to Limitation 4, that is
the problem of enabling people to manage, interact with, and keep track of large
numbers of heterogeneous collaborative things.

Existing approaches for enabling people to interact with things can be classified
in two categories [Mayer 2014a]: in Section 3.2.1, we discuss local interaction, in
which people have physical access to things, and then in Section 3.2.2 we discuss
remote interaction, for instance via search engines for the WoT.

3.2.1 Local interaction

IoT-related technologies embed sensing, actuation, processing and networking ca-
pabilities into everyday objects. Research in human-computer interaction (HCI)
investigates how these technologies may be leveraged to embed user interfaces into
people’s daily lives in a seamless fashion, a research trend also referred to as em-
bedded interaction [Kranz 2010a]. Other approaches investigate more explicit forms
of interaction between people and things in their surrounding by means of interac-
tion devices, such as smartphones [Derthick 2013] or smartglasses [Mayer 2014d], a
research trend also known as physical mobile interaction [Rukzio 2006a, Broll 2009].

3.2.1.1 Embedded interaction

Mark Weiser envisioned a ubiquitous network that would weave itself into the fabric
of everyday life [Weiser 1991]. With the proliferation of sensors, tagging technologies
and tiny computing devices, this vision is rapidly becoming a reality. Off-the-shelf

34 Chapter 3. Emerging Paradigms in the Web of Things

everyday objects already embed sensing capabilities to track usage and user ac-
tivities in a seamless fashion, without requiring additional input from end-users,
such as smart sneakers that monitor running or jumping22 and mattress covers
that detect movement and sleep cycles23. Other objects are augmented with capa-
bilities to communicate with people non-intrusively [Streitz 2005, Rose 2014]. For
instance, an umbrella may notify a user that it is going to rain by way of a discrete
light [Rose 2014].

Going a step further, embedding intelligence in things can partially or completely
eliminate interactions altogether. Such is the case of the Nest thermostat24, which
learns the temperature adjustment habits of its users in the first weeks of usage,
or Parrot’s autonomous flower pot featuring a self-contained irrigation system to
provide one month of water autonomy [Lardinois 2015].

Prototypes for embedded interaction also extend to multiple objects that gather
and share information. For instance, smart kitchen utensils may collaboratively
track activities and usage in order to provide context-aware recommendations of
recipes based on available ingredients [Langheinrich 2000], or variations of a recipe
already being prepared [Kranz 2010a]. Smart-Its Friends [Holmquist 2001] provides
a seamless interface that enables users to connect devices by holding and moving
them together: Smart-Its devices use accelerometers to track movement data, which
is then broadcasted to all other Smart-Its devices within listening range. If a device
receives a movement pattern similar to its own most recent data, the two devices
become “friends” and a dedicated connection is established. The connections estab-
lished between devices may then be used in different applications.

In the above approaches, computers disappear: either they become small enough
not to be observable, or they are no longer perceived as computing devices by users.
Interaction is implicit and embedded into users’ everyday tasks. These approaches,
however, are focused on interaction with individual things and do not address man-
aging or keeping track of large numbers of collaborative things.

3.2.1.2 Physical mobile interaction

In contrast with embedded interaction, physical mobile interaction [Rukzio 2006a,
Broll 2009] is explicit and relies on mobile devices for selecting and interacting with
things. Several techniques have been explored to select physical things by means
of interaction devices [Rukzio 2006b]: by pointing the mobile device to the object
(e.g., using a smartphone’s camera to capture visual markers), by touching the
object (e.g., using NFC tags) or scanning the environment for nearby things (e.g., via
Bluetooth).

Several studies have been implemented to evaluate the usability of mobile user
interfaces for appliances, as compared to traditional built-in interfaces. Some stud-
ies show that mobile interfaces are less efficient for everyday tasks than traditional

22http://nikeplus.nike.com/, Accessed: 02.12.2015.
23http://www.lunasleep.com/, Accessed: 02.12.2015.
24http://nest.com/, Accessed: 02.12.2015.

3.2. Interacting with Physical Things 35

interfaces, and thus would not be the first choice of users [Roduner 2007]. More
recent studies, however, focus on the dynamic and adaptive nature of mobile user
interfaces, which may be useful for extending traditional interfaces. These stud-
ies reveal increasing support both from users [Hardy 2010, Mayer 2014a] and user
experience designers [Derthick 2013].

Interaction devices may be particularly useful when entering new environments,
or when interacting with multiple heterogeneous things. In [Mayer 2014d], wearable
computers are used to select things by means of object recognition and to generate
user interfaces on-the-fly, such as volume controllers for speakers. Mayer [Mayer 2014b]
proposes augmented reality as a means to visualize message transmissions between
things as they occur, to the aim of supporting people to keep track of interactions in
smart environments. The main limitation of approaches based on object recognition,
however, is that they provide accurate results only for relatively small predefined
sets of things.

One prominent model for selecting and interacting with things by scanning the
local environment relies on beacons that broadcast URIs in their surroundings. Users
may then pick up the URIs using handheld devices, and bookmark or access them
with any regular Web browser. This approach was first pioneered in HP Labs’
Cooltown project [Kindberg 2002] by means of infrared beacons and PDAs. Blue-
tooth Low Energy beacons are now available at affordable prices. In October 2014,
Google released an open-source project25 to foster the development of URI bea-
cons26.

Similar to the embedded interaction mechanisms presented previously, most ap-
proaches for physical-mobile interaction are centered on interact with one individ-
ual thing at a time. The approach introduced by Mayer [Mayer 2014b] is targeting
keeping track of interaction among heterogeneous things, however it applies only to
real-time interaction in local environments. For instance, the user cannot keep track
of his things in his smart home while at work, or investigate logs of their interactions
later on.

3.2.2 Remote interaction

Previously, we discussed interaction mechanisms in which users have physical access
to things. In this section, we generalize our discussion to selecting and interacting
with physical things regardless of their location by means of discovery and look-up
mechanisms, which are the predominant remote interaction mechanisms investigated
in WoT research.

It is worth to note, however, that online social networks have also been proposed
as mechanisms for remote interaction with things [Blackstock 2011, Formo 2012],
which we consider to be complementary to the work presented in this section. We
discuss social aspects in the WoT in Section 3.4.

25http://physical-web.org/, Accessed: 02.12.2015.
26http://google.github.io/uribeacon/, Accessed: 02.12.2015.

36 Chapter 3. Emerging Paradigms in the Web of Things

In some publications, WoT search is referred to as “entity discovery” [Romer 2010].
In other publications, “resource discovery” refers to crawling a thing to discover its
properties and service interfaces, assuming that an entry point, such as the thing’s
URI, has already been found [Mayer 2011]. The discovered information is typically
partially or completely indexed. WoT search is then composed of two steps: resource
discovery and look-up, where the latter is concerned with retrieving relevant results,
using the indices built in the discovery step, with respect to a given query. In the
rest of this thesis, we generally follow the definitions given in the second approach.

In the next section, we present the problem of retrieving relevant physical things.
We then look at search infrastructures prominent in the WoT context.

3.2.2.1 Discovery and look-up in the WoT

The problem of search in the WoT can be defined as “finding real-world entities with
a given dynamic state” [Romer 2010]. The dynamic and contextual nature of infor-
mation is central to the WoT and requires real-time search, which is a fundamental
difference from indexing static Web documents. Furthermore, at the moment of
writing this thesis, there is no standard way of describing smart things and the
services they provide, and thus search engines for the WoT need to be extensible
in order to adapt to new representation formats and resource description mod-
els [Mayer 2012]. Lastly, WoT search engines should provide results that are useful
not only to humans, but also to software clients, for instance to look up services
for automatic composition [Mayer 2014a]. To sum up, search engines for the WoT
should be real-time, efficient, highly scalable, extensible and user-friendly, both to
humans and machines.

3.2.2.2 Search infrastructures for the WoT

A survey of search engines for the IoT is presented in [Romer 2010]. Many of these
search engines either retrieve (pseudo-)static content or raise efficiency concerns.
Consequently, the authors propose Dyser [Ostermaier 2010], a real-time search en-
gine for the WoT. Dyser is based on the assumption that enough sensors, such as the
ones focused around human behaviors, provide predictable inputs. Dyser uses sta-
tistical models to rank indexed entities and sensors based on the likelihood of being
in the state described by a given search query, for instance rooms that are empty.
Data is pulled from sensors in descending order of computed probabilities until a
number of hits is reached. Results are then ranked according to their relevance to
the submitted query.

Dyser is focused on real-time, efficient and scalable search for the WoT. Another
prominent discovery and look-up infrastructure for the WoT, which is to some extent
complementary to Dyser, is proposed by Mayer et al. [Mayer 2012, Mayer 2014a].
This system focuses on extensibility, high scalability and user-friendliness: it discov-
ers things, extracts metadata about their capabilities and makes them searchable for
clients. It is a distributed infrastructure with nodes organized hierarchically. The

3.3. Physical Mashups 37

motivation behind this design choice is to partition the search space by exploiting
the locality of things, based on the assumption that physical things interact much
more frequently with other devices in their immediate environment. To support
high scalability, nodes communicate only with direct neighbors. For instance, a
search would first be performed in a room, then expand to the entire floor, building
etc. Clients, however, may also explicitly specify the scope of a search. One of the
central features of the system is its high extensibility [Mayer 2011]: clients may add
new mappings from a non-standard representation to an internal model, which is
based on the Smart Thing Metadata model presented in [Guinard 2011a]. Further-
more, the internal representation model may also be extended through reflection,
for instance if a mapping considers properties not supported by the internal model.

The problem of searching the WoT is complementary to our research objectives.
It is worth to note that WoT search engines could benefit from enhanced discover-
ability in the ecosystem (cf. Limitation 2).

3.3 Physical Mashups

In the previous section, we discussed mechanisms for enabling interaction between
people and things. In this section, we discuss mechanism for enabling interaction
among things. We perform this investigation in relation to Limitation 3, that is the
problem of static IoT mashups that do not scale.

One of the motivations behind applying the REST architectural style (see Sec-
tion 2.1.1) to provide a resource-oriented architecture for the WoT (see Section 2.4.2)
is that once physical things are decoupled from one another, which facilitates mash-
ing up their services, that is the so-called physical mashups [Wilde 2007, Guinard 2009].
Furthermore, mashups editors similar to Yahoo Pipes!27 would then enable tech
savvy users to program their smart environments. We discuss process-driven com-
position and physical mashup tools in Section 3.3.1. Following this discussion, we
look at an approach for the automatic creation of physical mashups in Section 3.3.2.

3.3.1 Process-driven composition

As noted in Section 3.1, many IoT consumer products already provide Web APIs,
while a new wave of WoT hubs provide services to integrate into the Web more tradi-
tional consumer products and industrial solutions. Once physical devices and every-
day objects are exposed to the Web through RESTful APIs, developers may directly
integrate functionality across heterogeneous things to create physical mashups. Go-
ing a step further, several tools have already been developed to facilitate the creation
of physical mashups even for non-technical users. These tools typically leave the
heavy lifting of data integration to developers and offer end users higher level ab-
stractions, such as node templates or building-blocks, that may be easily integrated
into mashups that run in the cloud.

27https://pipes.yahoo.com, Accessed: 03.12.2015.

38 Chapter 3. Emerging Paradigms in the Web of Things

One such Web platform that has been gaining wide popularity lately is IFTTT28.
IFTTT enables users to mashup any of its supported services through simple rules
of the form if this then that. IFTTT already integrates with over 160 services,
which include SmartThings, Nest, Philips Hue, Jawbone, Fitbit, Android and iOS
devices. For instance, users can build simple automations such as turning on the
lights when they arrive home or receiving smartphone notifications if it rains the next
day. Nevertheless, while IFTTT is very easy to use, it is also limited to mashups
of two elementary services. Similar event-driven systems include Zapier29 or the
open-source Huginn30.

More complex process-driven modeling may be done by means of physical mashup
editors. These editors typically allow users to add and wire together building-blocks
as abstractions for things and services. First proposals prominent in the context
of the WoT were extending ClickScript31, a JavaScript-based mashup editor, to
include blocks featuring access to things [Guinard 2011a, Guinard 2011b]. More re-
cent proposals include WoTKit [Blackstock 2012], glue.things [Kleinfeld 2014] and
the highly popular Node-RED32, an open-source platform launched in 2013 by IBM
to foster the rapid prototyping of IoT applications. Unlike the mashup editors men-
tioned previously, Node-RED is a tool more accessible to developers and was not
built to run mashups in the cloud. Node-RED is supported by a large community
that contributes with node templates and mashups, referred to as flows33.

The above editors are domain-independent. Other approaches offer even more
user-friendly graphical abstractions for specific application domains, such as home
automation. For instance, with homeBlox [Rietzler 2013] users create mashups by
connecting different blocks, represented through icons, that denote human activities,
household appliances, logical operators etc.

It is worth to note that all the process-driven platforms presented above are
centralized. There are also initiatives to build distributed platforms, such as the
prototype presented in [Blackstock 2014b]. Given the inherently parallel charac-
teristic of process-driven models, the motivation is to take advantage of computing
resources across devices and cloud-based services. The prototype extends Node-RED
to support distributed flows by manually specifying devices for node execution.

The techniques to create physical mashups presented so far enable developers and
tech savvy users to manually wire the WoT. This approach can be useful in several
scenarios, from small-sized home automation to industrial automation. However,
connections created between things are static, which means that the constructed
physical mashups cannot adapt to dynamic environments or evolving user require-
ments. Furthermore, manually wiring the IoT does not scale (cf. Limitation 3).

28https://www.ifttt.com/, Accessed: 03.12.2015.
29http://www.zapier.com/, Accessed: 03.12.2015.
30https://github.com/cantino/huginn/, Accessed: 03.12.2015.
31http://www.clickscript.ch
32http://www.nodered.org, Accessed: 03.12.2015.
33http://flows.nodered.org/14.11.2015

3.4. Social Aspects in the WoT 39

3.3.2 Goal-driven composition

In order to avoid the adaptability and scalability problems inherent with the manual
development of static physical mashups, goal-driven composition has been applied in
the context of the WoT in [Mayer 2014c]: users specify their goals, such as playing a
specific song, and it is left to the underlying infrastructure to deal with the automatic
composition of services. Users may specify goals using visual language tools, by
choosing from a set of available options etc.

In this approach, things add metadata to their services using RESTdesc [Verborgh 2011],
a language for creating functional descriptions for RESTful services. A RESTdesc
description is expressed in Notation3 and consists of a set of preconditions, a set
of postconditions and an HTTP request that achieves the transition between the
two states. Given the user’s goals and descriptions of available services, a backward
chaining reasoner is used to find an applicable sequence of HTTP requests such that
the final state is achieved. If such a sequence is found, it is applied to the environ-
ment. A WoT discovery and look-up mechanism is necessary for retrieving available
services (see Section 3.2.2.2).

3.4 Social Aspects in the WoT

Human social networks provide an intuitive metaphor for thinking about people,
how they relate and interact with one another. The idea that pervasive computing
could benefit from social concepts is gaining momentum. An extensive discussion of
previous work on the convergence of social networks and the WoT/IoT is provided
in [Ortiz 2014]. This convergence is frequently referred to either as the Social Web
of Things [Formo 2012, Zhang 2012] or the Social Internet of Things [Atzori 2012],
two emerging terms.

In this section, we summarize different approaches that apply social concepts to
ubiquitous computing. We begin with platforms and applications that have been
inspired by online social networks. Most of these initiatives have spawned from
WoT-related research. We then extend our discussion to more general definitions of
social things in the broader context of the IoT.

3.4.1 Platforms and applications

A number of research projects have used social networks for sharing Web-enabled
things. For instance, SenseShare [Schmid 2007] proposed to use Facebook as front
end to their system, relying on the platform’s social graph for sharing sensor data
with friends. Guinard et al. [Guinard 2010a] went a step further by providing
support for several social platforms and a central point of access control. The sys-
tem would also crawl things to discover the resources and operations available for
sharing. Paraimpu [Pintus 2012] is another social tool that allows users to share, dis-
cover, bookmark and compose things. Therefore, Paraimpu is essentially a socially-
enhanced physical mashup platform (cf. Section 3.3.1). In Paraimpu, other social

40 Chapter 3. Emerging Paradigms in the Web of Things

networks, such as Facebook or Twitter, may be used as sensors/actuators.
Kranz et al. [Kranz 2010b] were among the first to explore the use of an existing

social network, in particular Twitter, as a sensor/actuator in technological networks,
thus building socio-technical networks. The authors, however, do not discuss a
general architecture for developing such systems. Twitter, unlike other well-known
social platforms, does not restrict its users to people: a Twitter user may be anyone
or anything. Consequently, Twitter inspired a number of other IoT projects as well.
López-de-Armentia et al. [López-de Armentia 2014] use Twitter as a communication
platform for collaborative eco-aware appliances that rely on prediction models to
infer how they should operate. The exchange of energy consumption patterns with
similar devices bootstraps new eco-aware things, thus avoiding a cold start problem.
In other approaches, things are microblogging about a user’s mundane activities,
such as an elderly going out for a walk, to enhance human-to-human interactions
[Nazzi 2011].

Thing Broker [Perez de Almeida 2013] was also inspired by Twitter, and is based
on the authors’ previous experience with Magic Broker 2 [Blackstock 2010] and
WoTKit [Blackstock 2012]. Thing Broker uses two main abstractions, things and
events, to build a Twitter-like communication model. Relationships between things
are unidirectional, similar to the following/followed relationship. Any data produced
by a thing is encapsulated in events that are perceived by all followers. In the
industry, a commercial WoT hub self-described as "Twitter for social machines" is
dweet.io34.

The above platforms and applications make limited use of existing online social
networks. Blacktock et al. [Blackstock 2011] explore a stronger integration between
existing social networks and the WoT. One observation is that some social platforms,
such as Facebook or the ones implementing OpenSocial (see Section 2.2), may be
extended with plug in applications, thus providing familiar user interface containers
for WoT applications. Unlike SenseShare, the authors emphasize the need for WoT
applications not to rely on one given social platform, but rather to be open to
multiple such platforms. The authors go further and lay out key issues that need to
be addressed towards a stronger integration with social networks, such as: identity
authentication, extending social network models to accommodate things, dealing
with privacy, thing state integrity and timeliness, maintaining dynamic relationships
between people, places and things. We address several of these issues in Part II.

3.4.2 Social things

It is worth to note that most of the social aspects present in the WoT-related
research in the previous section are centered around the Social Web, as it currently
presents itself by means of different social platforms. Approaches in the broader IoT
community tend to look at social aspects in a more generic fashion.

One of the first projects to explore the relation of friendship between objects was
Smart-Its [Holmquist 2001] (see Section 3.2.1.1): users may hold and move together

34http://www.dweet.io/, Accessed: 17.11.2015.

3.4. Social Aspects in the WoT 41

Smart-Its devices to create connections between them, which may then be used in
different applications. In other work, Vazquez et al. define social devices as objects
that use the Internet "in order to communicate, collaborate, use global knowledge
to solve local problems and perform in exciting new ways" [Vazquez 2008]. These
devices "talk" to each other, locally or globally, at a semantic level by adding struc-
ture to and interpreting information. In doing so, devices use embedded reasoners
and download ontologies from the Internet. Going a step further, authors envision
artifacts that may be attached to living entities, such as plants, to make them appear
intelligent. In a prototype implementation, a smart plant is able to perceive and
interpret data in its environment to determine if conditions are suitable. If not, the
smart plant asks its owner to be moved to a more suitable place using a synthesized
voice. The plant thus becomes a first-class entity in its environment: it is proactive
and influences its surrounding environment to achieve goals. We discuss autonomy
and proactivity in Chapter 4.

Kortuem et al. are also considering autonomy and propose an “alternative ar-
chitectural model for the IoT as a loosely coupled decentralized system of smart
objects – that is, autonomous physical/digital objects augmented with sensing, pro-
cessing, and network capabilities” [Kortuem 2010]. In this view, the application
logic is divided across multiple physical things that “sense, log, and interpret what’s
occurring within themselves and the world, act on their own, intercommunicate with
each other, and exchange information with people”. The authors lay out some of
the questions to be addressed: “what is the right balance for the distribution of
functionality between smart objects and the supporting infrastructure? How do we
model and represent smart objects’ intelligence? What are appropriate program-
ming models? And how can people make sense of and interact with smart physical
objects?”.

Researchers at the Ericsson User Experience Lab have illustrated, in a blogpost
from 2012, a vision for the IoT that is similar to the one of Kortuem et al. presented
above.35 In their investigation, Ericsson was searching for an efficient mechanism to
interact with large numbers of products and services. The initial approach of cre-
ating a mashup editor, similar to the ones described in Section 3.3.1, did not scale,
both in terms of the user interface itself, but also in terms of understandability,
or the ways in which users were able to comprehend large physical mashups. On-
line social networks are proposed as an alternative uniform interface for managing
heterogeneous things. Things dynamically interacting with one another and their
owner using the underlying social relations. Once again, things exhibit autonomous
and goal-driven behavior.

Human social networks are also the driving force of Atzori et al.’s vision for a
Social Internet of Things (SIoT) [Atzori 2012]. In this vision, things establish and
manage their connections autonomously, by following the semantics of a pre-defined
set of basic relation types:

• parental object relationship: established among things from the same produc-
35http://www.ericsson.com/uxblog/2012/04/a-social-web-of-things/, Accessed: 16.11.2015.

42 Chapter 3. Emerging Paradigms in the Web of Things

tion batch;

• co-location object relationship: established among things used always in the
same place (e.g. in a home, city); the authors note that while it might be
unlikely for some co-located objects to cooperate with one another, these re-
lations are nevertheless useful for building "short" links within the network;

• co-work object relationship: established when things collaborate in an IoT
application;

• ownership object relationship: established among things that belong to the
same user;

• social object relationship: established when things come in contact due to
encounters between their owners.

Aside from the behavior dictated by these types of relations, things are also com-
pliant to any other rules that may be imposed by their owners. Related research
investigates the structural properties of the SIoT network [Asl 2013], search opti-
mization strategies [Nitti 2014a], task allocation [Colistra 2014] and trustworthiness
management [Nitti 2014b] in the SIoT. We find the work on these various problems
valuable and complementary to our research objectives.

It is important to note, however, that in the SIoT vision, people networks and
object networks are two worlds apart. While these worlds could meet in SIoT
applications, thus at a higher level, as the SIoT is currently presented, people and
things are not first-class entities of the same system, which is an important difference
from our vision and research objectives. Furthermore, a set of social relationships
is proposed, which is based on the authors’ interpretation of results from social
sciences in the context of IoT applications [Atzori 2012]. While we find this approach
innovative, and it provides a promising starting set of object relationships, we are
not convinced that relations between things should be limited to a pre-defined set of
relations. Previous work in WoT-related research points out the lack of consensus
for describing things and any data associated to them, which motivates the need for
generic and extensible solutions (see Section 3.1.3 and Section 3.2.2).

3.5 Summary

In this chapter, we presented a survey of emerging abstractions and models in the
WoT. We discussed multiple aspects that are relevant to better identify and define
the scope of the limitations that motivate of our work (see Section 1.1):

In Section 3.1, we discussed currently used strategies for integrating things into
the Web and we observed that the WoT is evolving towards a platform-centric
architecture, which stresses the need for platform-level interoperability. There is
significant effort put into standardizing the WoT/IoT by several prominent orga-
nizations, such as IETF and W3C. In addition, individual research groups already

3.5. Summary 43

provide developers with tools to address interoperability issues. We consider that ap-
proaching interoperability from both angles is beneficial for ensuring a good balance
between standardization versus innovation. We presented a progressive strategy for
achieving uniform interfaces for heterogenous WoT platforms based on a mediated
model of catalogues of things. These approach, however, does not emphasize cross-
platform interaction. It is also wroth to note that the many similarities between
the specification underlying this approach and the LDP [Speicher 2015] supports
our observation that the LDP could be a suitable candidate for standard-compliant
interaction in the WoT (see Section 2.3.3).

Our discussion on integrating IoT consumer products into the Web points out
that many such products currently rely on dedicated applications for usage. In Sec-
tion 3.2, we surveyed other mechanisms to enable interaction between people and
things. Research in human-computer interaction investigates the seamless integra-
tion of user interfaces into people’s everyday tasks. Remote interaction, in which
people do not have physical access to things, is currently addressed by means of
discovery and search infrastructures. Furthermore, mechanisms that would enable
people to keep track of interactions among heterogenous things in smart environ-
ments is also a researched topic. Existing approaches, however, do not address
keeping track of large numbers of heterogeneous things and independent of their
location.

In Section 3.3, we surveyed approaches that integrate functionality across het-
erogeneous things. Most approaches focus on creating static physical mashups of
things and services in a (semi-)manual fashion. These approaches, while useful in
many scenarios, also present a number of limitations. They do not scale well to
large numbers of things, and they cannot adapt to dynamic environments or evolv-
ing user requirements. From a user experience perspective, creating and managing
large physical mashups is cumbersome.

In Section 3.4, we discussed approaches that apply social concepts to ubiquitous
computing. In WoT-related research, the term Social Web of Things is generally
limited to leveraging features offered by existing social platforms, such as authentica-
tion, sharing access to things, or using online social networks as interface containers
for things. In the broader IoT community, approaches focus more on endowing
things with social abilities, such that they can dynamically connect and talk to one
another. It is worth to note that most of the approaches presented in Section 3.4.2
raise the need for autonomy and proactive behavior, however they either do not
provide mechanisms for enhancing things with such abilities, or they are limited
to hard-coding a set of predefined behaviors in things. In the following chapter,
we discuss results from multi-agent research in search of appropriate models and
technologies to address this issue.

Chapter 4

Autonomy, Sociability and
Regulation

Contents
4.1 Multi-Agent Systems . 45

4.1.1 Properties of agents and multi-agent systems 46

4.1.2 Modeling dimensions for multi-agent systems 46

4.2 Sociability in Multi-Agent Systems 47

4.2.1 Agents and artifacts . 47

4.2.2 Interaction . 48

4.2.3 Social reasoning . 50

4.3 Regulation in Multi-Agent Systems 50

4.3.1 Norms in MAS . 51

4.3.2 Social control . 52

4.3.3 Normative organisations . 52

4.4 Summary . 53

In the previous chapters, we focused our discussion on the limitations that mo-
tivate our work (see Section 1.1). One of the core tenets of our thesis is to endow
things with autonomy, a concept that is central to multi-agent systems (MAS).

MAS is a vast domain. Similar to Chapter 2, the purpose of this chapter is to
explore results from this domain that could help us bring about the envisioned IoT
ecosystem. In Section 4.1, we begin with a general discussion about autonomous
agents and MAS. In Section 4.2, we discuss models and mechanisms that enable
agents to interact with one another and with their environment, and to reason upon
the social context in which they are situated. In Section 4.3, we discuss approaches
to enable control over autonomous behavior.

4.1 Multi-Agent Systems

In what follows, we discuss the properties of agents and MAS in Section 4.1.1, and
in Section 4.1.2 we present the various dimensions typically used to study issues
addressed in multi-agent research.

46 Chapter 4. Autonomy, Sociability and Regulation

4.1.1 Properties of agents and multi-agent systems

An agent is commonly defined as “a computer system, situated in some environ-
ment, that is capable of flexible autonomous action in order to meet its design
objectives” [Jennings 1998]. Autonomy is central to this definition and refers to the
agent’s ability to operate on its own, without the need of direct intervention from
people or other agents. An autonomous agent thus has control over its actions and
internal state.

An agent is typically situated in an external context or environment. The agent
may perceive its environment by means of sensors and perform actions to influence
its environment by means of actuators. What differentiates an agent from other
autonomous systems [Jennings 1998], such as a software daemon that also operates
autonomously in some software environment, is the agent’s flexibility in the pursuit
of some design objectives. Flexibility implies that the agent is responsive by reacting
to changes in the environment in a timely fashion, pro-active by exhibiting goal-
driven behavior and taking the initiative when appropriate, and social by interacting
with humans or other agents in order to achieve complex tasks that would otherwise
overcome its own capabilities.

Following the above agent definition, a multi-agent system (MAS) is a system
conceptualized in terms of agents situated in a shared environment that interact
with one another to achieve their objectives [Jennings 1998, Zambonelli 2003]. The
multi-agent paradigm is thus suitable for building open and distributed systems sit-
uated in dynamic and complex environments, and which may interact with or act on
behalf of humans [Boissier 2013]. Such systems are characterized by an inherent dis-
tribution of control, data, expertise or resources [Wooldridge 1995, Jennings 1998].
Furthermore, openness implies that agents and their intentions are not known in ad-
vance, they may change at runtime and they may be heterogeneous [Jennings 1998,
Sycara 1998]. Consequently, given their properties of decentralization, distribution,
heterogeneity and openness, MAS research takes into consideration issues such as
communication, trust, negotiation, coordination and regulation.

4.1.2 Modeling dimensions for multi-agent systems

Given the complexity of the issues addressed by multi-agent research, they have been
generally studied on a number of specific dimensions [Demazeau 1995, Boissier 2013],
namely the agent, environment, interaction, and organisation dimensions.

The agent dimension is concerned with providing agent architectures, such as
the Belief-Desire-Intention (BDI) model for cognitive agents [Rao 1995], and agent
programming languages, such as Jason [Bordini 2007] or 2APL [Dastani 2008] that
enable the direct implementation of agents in terms of BDI concepts.

The environment dimension is concerned with providing architectures, frame-
works and infrastructures for modeling and implementing shared environments in
which agents can coexist and evolve [Weyns 2005].

The interaction dimension is concerned with enabling communication and inter-

4.2. Sociability in Multi-Agent Systems 47

action among agents, for instance via agent communication languages [Labrou 1999]
and interaction protocols [Demazeau 1995].

The organisation dimension is concerned with providing models, languages and
infrastructures for defining, implementing and monitoring agent organisations, which
typically use different abstractions, such as norms, schemes or structures, to formally
specify and achieve collective objectives [Argente 2013].

Programming paradigms have been proposed for each of the above dimensions,
namely agent-oriented programming [Shoham 1993], environment-oriented program-
ming [Ricci 2011], interaction-oriented programming [Huhns 2001] and organisation-
oriented programming [Boissier 2007]. Several multi-agent languages and platforms
are discussed in [Bordini 2005]. More recently, Boissier et al. [Boissier 2013] have
proposed the multi-agent oriented programming paradigm, which integrates the
agent, environment and organisation dimensions in the JaCaMo1 meta-model and
platform.

Given the numerous programming paradigms and technologies for the develop-
ment of autonomous agents and MAS, we consider multi-agent technologies can
be suitable candidates for programming autonomous things in the envisioned IoT
ecosystem.

4.2 Sociability in Multi-Agent Systems

Once we endow things with autonomy, our aim is to enable them to interact, in
a flexible fashion, with other things and with their human users. In this section,
we discuss further the environment and interaction dimensions in MAS. In Sec-
tion 4.2.1, we begin with a discussion on shared environments, which can be used to
embed mechanisms for indirect communication and coordination. We then discuss
more direct forms of interaction in Section 4.2.2. In Section 4.2.3 we move away
from interactions and focus on social reasoning, which agents can use to decide, for
instance, who they should interact with or what social structures they should join.

4.2.1 Agents and artifacts

Thorough discussions of various approaches to model environments in MAS are
available in [Weyns 2005, Platon 2007]. In a situated MAS, that is a system of agents
that perform actions in some external context (cf. Section 4.1.1), the environment is
typically a first-class abstraction that handles several responsibilities [Weyns 2007]:
it provides agents with access to resources and services, it can actively manage its
own state (e.g. evaporation of digital pheromones produced by ant-like agents), it
can serve agents as a shared memory or as a medium for indirect interaction and
coordination.

Some agent programming languages, such as Jason or 2APL, simulate environ-
ments as single computational objects. This monolithic approach implies that envi-

1http://jacamo.sourceforge.net/, Accessed: 12.03.2015.

48 Chapter 4. Autonomy, Sociability and Regulation

ronments are centralized and may not be easily extended at runtime. In a different
approach, the Agents and Artifacts (A&A) [Omicini 2008, Ricci 2011] meta-model
defines an environment as a dynamic set of entities, called artifacts, which repre-
sent resources or tools that agents may use to achieve their design objectives. An
artifact is made accessible by means of operations, that is computational processes
executed inside the artifact that may be triggered by an agent or another artifact,
and observable properties, which are state variables that may be perceived by agents
observing the artifact. Operations can change the state of the artifact, and thus the
values of observable properties, or can trigger observable events or signals to notify
all observing agents about an event that occurred inside the artifact, such as an
alarm triggered by a clock artifact. The artifact may provide agents with a manual,
that is a machine-readable document containing a description of the artifact’s func-
tionalities. Artifacts may be linked together and are grouped in workspaces, which
introduces the notion of locality or otherwise relatedness in environments.

The A&A meta-model makes a clear separation between the proactive parts of
a MAS that are designed to achieve some goals, namely agents, and the passive
parts, namely artifacts, that provide the former with the resources and function-
alities needed to achieve their goals. Environment processes are encapsulated in
artifacts, and therefore this approach inherently supports distributed environments.
Furthermore, agents may create, destroy or “learn” how to use artifacts at runtime,
which allows for the creation of a more flexible runtime environment. The A&A
meta-model has been implemented in the CArtAgO platform [Ricci 2007a].

It is worth to note that artifacts provide a mechanism for merging the agent, envi-
ronment, interaction and organisation dimensions in a flexible fashion [Boissier 2013].
An agent’s external actions may be mapped to artifact operations and an artifact’s
observable properties to an agent’s percepts, thus linking the agent and environment
dimensions. Artifacts may also encapsulate mechanisms for indirect interaction and
coordination [Omicini 2004].

4.2.2 Interaction

As discussed in the previous section, environments can embed mechanisms for indi-
rect interaction among agents. In this section, we discuss forms of direct interaction
among agents.

Research on multi-agent communication and interaction has been strongly in-
fluenced by the speech act theory, which we discuss in the following section. In
Section 4.2.2.2, we discuss about speech acts, which provide primitives used by
agent communication languages to enable a formal exchange of information be-
tween agents. In Section 4.2.2.3, we present how these exchanges can be structured
by means of interaction protocols.

4.2. Sociability in Multi-Agent Systems 49

4.2.2.1 Speech act theory

Agent communication is typically based on speech act theory [Austin 1962, Searle 1969],
which treats language as action. That is, similar to actions performed in the en-
vironment, an agent may attempt to change the state of the world by means of
utterances. For instance, an agent may ask another agent to perform an action, a
speech act identified by Searle as a directive. Other types of speech acts include
representatives or assertives, which inform the hearer about something, commisives,
which are promises made by the speaker to do something, expressives, which are used
to express mental states or emotions, and declaratives, which change the reality with
respect to the utterance.

Unlike actions, however, the domain of a speech act is limited to the mental states
of the hearers [Bordini 2007]. In other words, the “direct” change that a speech act
may bring in the world is in terms of the hearer’s beliefs, desires or intentions. The
hearer is then the one to interpret the utterance and possibly translate it to actions.

4.2.2.2 Agent communication languages

Speech act theory has been used as a theoretical framework for modeling agent com-
munication [Labrou 1999]. Speech acts, also referred to as performatives, are typi-
cally used as primitives in agent communication languages (ACLs). ACLs provide
mechanisms for exchanging information among agents. Singh [Singh 1998] discusses
two main approaches for designing ACLs. The first approach defines the mean-
ing of speech acts in terms of mental states, such as beliefs, desires or intentions.
Prominent mentalistic ACLs are KQML [Finin 1995, Labrou 1994] and FIPA-ACL2.
The second approach defines the meaning of speech acts in terms of social commit-
ments, such as an agent committing itself to the truth value of a statement made
by means of an assertive speech act. One such commitment-based ACL is proposed
in [Fornara 2002].

Singh [Singh 1998] argues that mentalistic ACLs focus on the private perspective
of the sender and receiver involved in an interaction. However, in an open system
composed of heterogeneous agents, an agent cannot make strong assumptions about
the mental states of others [Singh 1998, Fornara 2002]. Furthermore, such mental-
istic ACLs typically assume that agents are sincere and cooperative, and not for
instance competitive. Therefore, this approach imposes constraints both on the de-
sign and the autonomy of agents. In contrast, commitment-based ACLs are focused
on the public perspective of interaction in a MAS, which facilitates monitoring and
testing for compliance. Therefore, this approach makes little assumptions on the
agents’ mental states or actions: social commitments are public, unambiguous and
objective. This promotes heterogeneity and agent autonomy.

2http://www.fipa.org/specs/fipa00061/, Accessed: 02.12.2015.

50 Chapter 4. Autonomy, Sociability and Regulation

4.2.2.3 Interaction protocols

ACLs enable the exchange of information among agents. Going a step further,
interaction protocols specify how these exchanges take place between agents involved
in an interaction, typically in the form of sequences of speech acts to be performed.

For instance, in the FIPA Contract Net Interaction Protocol3, an extension
of the contract net framework developed by Davis and Smith [Davis 1983], the
initiating agent wishes to have a task performed by one or more participating agents.
Furthermore, the initiator typically aims at optimizing a function that characterizes
the task, such as a price or time to completion. To achieve this objective, the initiator
first sends a call for proposal to a number of participants. Participants may accept
the task and respond with proposals before a given deadline. The initiator evaluates
the received proposals, and either accepts or rejects them. If a proposal is accepted,
the participant informs the initiator of the result once the task is completed.

Standardizing communication by means of interaction protocols is particularly
useful in the context of open systems of heterogeneous agents. The Foundation
for Intelligent Physical Agents (FIPA) has standardized several interaction proto-
cols, for instance for request-response interactions, publish-subscribe, auctions, or
recruiting agents that are appropriate for given tasks.4 An overview of the FIPA
approach to standardization is available in [Poslad 2007].

4.2.3 Social reasoning

In the previous sections, we have discussed mechanisms for enabling interaction
among agents, either directly or by means of shared environments. In this section,
we move away from interactions and focus on another facet of sociability in MAS,
namely social reasoning.

Sichman et al. [Sichman 1998] define social reasoning to be any type of reasoning
mechanism that uses information about other agents to draw some inferences, and
propose one such mechanism based on dependence relations [Castelfranchi 1992]
among agents. An agent is dependent on another if the latter can help or pre-
vent the former to achieve one of its goals [Sichman 2001]. In order to determine
such relations, an agent needs to dynamically acquire and update information about
the goals, resources, actions or plans of other agents, for instance by means of in-
troduction protocols used when entering the agent society [Berthet 1992]. Using
social reasoning and the computed dependence networks, agents can then evalu-
ate at runtime if their goals are achievable or if their plans are feasible, they can
dynamically form coalitions with other agents or revise their beliefs about other
agents [Sichman 2001].

In other work, Carabelea et al. [Carabelea 2005] propose the use of social power
to enable agents to reason about the constraints or gains when entering a group,
such as an organisation or team. Social dependence and social power are to sides of

3http://www.fipa.org/specs/fipa00029/SC00029H.html, Accessed: 02.12.2015.
4http://www.fipa.org/repository/ips.php3, Accessed: 02.12.2015.

4.3. Regulation in Multi-Agent Systems 51

the same coin: an agent has social power over another that depends on the former.

4.3 Regulation in Multi-Agent Systems

Up to this point, we have explored how things could be enhanced with autonomy,
how they could be enabled to interact with one another and to reason upon the social
context in which they are situated. However, in an open ecosystem of autonomous
things no prior assumptions can be made about the behavior of things, which raises
the question of how can control be enabled over their autonomous behavior such
that the overall ecosystem does not exhibit undesired behavior. That is to say, we
are looking for mechanisms to provide autonomous, social things with a normative
context to guide and regulate their interactions.

The study of norms in MAS is a research topic that has grown in importance
over the past decades [Ossowski 2012]. In the following, we begin with a general
discussion about normative MAS (see Section 4.3.1). Then, we focus our discussion
on social control mechanisms (see Section 4.3.2) and normative organisations (see
Section 4.3.3). The former are useful to enforce control in open and decentralized
MAS, and the latter are useful to coordinate agents towards a desired collective
behavior, such as achieving a complex task. Therefore we find these mechanisms to
be of interest in the context of the envisioned open and decentralized IoT ecosystem
of collaborative things. It is worth to note that the two approaches can be used in
conjunction.

4.3.1 Norms in MAS

There exist several views on the definitions of norms and their role in MAS [Balke 2013].
Detailed explorations of normative concepts in MAS are available in [Ossowski 2012,
Andrighetto 2013]. In what follows, we provide a rough overview of the concepts on
which we base our discussion throughout the rest of this dissertation.

In the context of the SWoT we are interested, in particular, in norms that affect
agent behavior. Some norms can be implemented in the environment or can be hard-
coded into agents to regiment their actions. That is to say, actions that an agent
should not be allowed to perform are simply not possible for the agent. However,
not all norms can be implemented in such manner. Furthermore, regimentation
severely restricts an agent’s autonomy.

Another approach is to define norms that regulate the agents’ behavior by de-
scribing what actions they are obliged, prohibited or permitted to perform. Such
norms are also called regulative norms [Ossowski 2012] or prescriptions [Balke 2013]
and they generally specify who does what in what context and as subject to what
deontic modality. Regulative norms, therefore, affect agent behavior in an indirect
manner. Consequently, in order to be effective, regulative norms require enforcement
mechanisms that could, for instance, sanction norm violators.

It is important to note that agents can decide to conform or not to regulative
norms, for instance, by balancing internal motivation versus external consequences.

52 Chapter 4. Autonomy, Sociability and Regulation

Some norms can also be in conflict if, for instance, a norm obliges an agent to perform
an action, whereas a different norm prohibits the agent to take the same action.
Reasoning about norms, norm violations, conflicts and many other interesting norm-
related subjects are studied by multi-agent research [Andrighetto 2013].

In the following sections, we continue our discussion with two mechanisms for
enforcing norm-conformance, that is social control and normative organisations.

4.3.2 Social control

In a decentralized system of agents, in which there is no central authority, the
task of enforcing norm-conformance belongs to the agents in the system. To this
purpose, agents can use social constructs, such as trust and reputation, to discover
trustworthy agents, to sanction norm violators, and to reason about committing
violations.

Thorough discussions on computational models for trust and reputation are
available in [Sabater 2005, Pinyol 2013, Ossowski 2012], and in the context of social
networks in [Sherchan 2013]. Intuitively, trust refers to the relation between two
agents, that is a truster and a trustee, whereas reputation is built based on expe-
riences communicated by other agents. For instance, many of the existing online
services, such as Amazon5, eBay6 or AirBnB7 rely on opinions shared by members
in communities built around the service. A detailed survey of trust and reputation
in online services is available in [Jøsang 2007].

Mechanisms based on trust and reputation are susceptible to several vulner-
abilities. For instance, malevolent agents, or groups of malevolent agents, can
spread false information in the system to ruin one’s reputation or to build their
own reputation [Jøsang 2007]. Another well-recognized vulnerability is when agents
with low reputation are able to change their identities and thus reset their reputa-
tion [Jøsang 2007]. Other vulnerabilities include discrimination [Jøsang 2009], for
instance when an agent offers the same service with different quality levels to dif-
ferent agents, or reputation lag [Jøsang 2009], that is when an agent is able to take
advantage of a period of time before its reputation is updated.

4.3.3 Normative organisations

Normative organisations can be applied to open and decentralized MAS to eliminate
unwanted behavior or to achieve a coordinated behavior of the overall system. For
instance, organisations can be used to coordinate teams of agents to achieve complex
tasks. In contrast to social control, where control emerges from the independent ac-
tions of agents, organisations follow a top-down approach to regulating agent behav-
ior. A state-of-the-art on multi-agent organisations is available in [Ossowski 2012].

An organisation is typically created by a designer using an organisational model,
which provides a conceptual framework and a syntax that the designer can use to

5http://www.amazon.com/, Accessed: 04.12.2015.
6http://www.ebay.com, Accessed: 04.12.2015.
7http://www.airbnb.com/, Accessed: 04.12.2015.

4.4. Summary 53

create a specification of the organisation [Argente 2013]. Several organisational
models have been proposed, such as AGR [Ferber 1998], ISLANDER [Esteva 2002],
MOISE+ [Hubner 2007], and OMNI [Dignum 2005].

The organisation can then be implemented in a MAS by means of an organisa-
tion management infrastructure [Argente 2013], such as ORA4MAS [Hubner 2007],
that interprets the specification and instantiates the organisation. Agents can use
the infrastructure to join, leave, and participate in the organisation. Agents become
aware of the organisation and can reason, for instance, before entering the organisa-
tion. The infrastructure can monitor norms in the organisation and apply sanctions
to violators. It is worth to note that exposing such infrastructures via the Web
could be beneficial to support interaction with heterogeneous agents in open MAS.

A detailed comparison of these models, and others, is available in [Coutinho 2005].
There is not yet a consensus on a unified model for describing organisations. Sev-
eral dimensions are typically used to this purpose (see [Coutinho 2005]). Groups and
roles seem to be common to all models, even though their semantic is not unique.
In most cases, however, they are considered to be abstractions of a context for col-
lective actions, respectively of status. Both are used to express norms or regulative
behaviors.

4.4 Summary

In this chapter, we discussed models and technologies that could be useful to endow
things with autonomy, sociability, and to make them susceptible to regulation. Multi-
agent research provides a rich toolbox that could help achieve each of these three
characteristics.

In Section 4.1, we discussed the properties of agents and multi-agent systems
(MAS), we discussed the various modeling dimensions that can be used to address
research topics in MAS, and we referenced several agent programming languages
and multi-agent platforms that could be used to endow things with autonomy and
build systems of autonomous things.

In Section 4.2, we discussed models and mechanisms for enabling agents to in-
teract with one another and with their environment, and also to reason upon the
social context in which they are situated, such that, for instance, they can decide
whom to interact with. These models and mechanisms could be useful to endow
things with sociability.

In Section 4.3, we discussed models for providing agents with a normative context
that would guide their evolution and interactions, and which could thus be useful
to enable control over the autonomous behavior of things.

Part II

Designing a Social Web of Things

Chapter 5

A Layered Architecture for the
Social Web of Things

Contents
5.1 Application Scenarios . 58

5.1.1 Discoverability: The social TV 58

5.1.2 Flexible interaction: The wake-up call 59

5.1.3 Remote interaction: The laundry room 60

5.1.4 Coordination: A welcoming home 60

5.1.5 Discussion . 61

5.2 Principles . 63

5.2.1 Foundational principles . 63

5.2.2 General design principles . 65

5.3 Layered Architecture . 66

5.3.1 Agency layer . 68

5.3.2 Social layer . 69

5.3.3 Normative layer . 72

5.3.4 Application layer . 73

5.4 Summary . 74

In Part I of this dissertation, we identified several limitations that hinder the
development of the Internet of Things (IoT), and we have discussed current develop-
ments in the World Wide Web and multi-agent research that could prove beneficial
in addressing these limitations.

In this chapter, we introduce our vision for an IoT ecosystem that transcends the
identified limitations, which we call the Social Web of Things (SWoT). We define a
vision to be a destination accompanied by a sensible path to reach it. We illustrate
our destination in Section 5.1 by means of several application scenarios constructed
around the identified limitations. We discuss the principles that define and shape
our approach in Section 5.2. In conformance with these principles, we propose a
layered architecture for the envisioned IoT ecosystem in Section 5.3.

58 Chapter 5. A Layered Architecture for the Social Web of Things

5.1 Application Scenarios

In what follows, we present four application scenarios. Each scenario has been de-
signed to showcase what can be achieved by addressing one or more of the identified
IoT limitations that motivate our work (see Section 1.1). The “Social TV” scenario
in Section 5.1.1 showcases discoverability in the SWoT (see Limitation 2). The
“Wake-up call” scenario in Section 5.1.2 showcases flexible interaction in the SWoT
(see Limitation 3). The “Laundry room” scenario in Section 5.1.3 showcases uniform
remote interaction with heterogeneous things (see Limitation 4). The “A welcoming
home” scenario in Section 5.1.4 showcases coordination among autonomous things
in the SWoT (see Limitation 3). In all scenario we assume that things are free from
silos and able to autonomously participate in the SWoT (see Limitation 1).

We conclude this section with a discussion of the properties of the IoT ecosystem
depicted in these scenarios.

5.1.1 Discoverability: The social TV

David has bought a social TV. During the installation process, David connects the
TV to his STN Box1, a WoT home hub that interconnects all of David’s devices and
services. What distinguishes the social TV from other similar products is that it can
autonomously discover and interact with other social things to exchange information
or provide complex functionality. For instance, the social TV can aggregate data
from David’s home appliances and display it in a dashboard, or it may summarize
and display news from David’s online social networks, such as Facebook or Twitter.
These features are either implemented by the TV’s manufacturer or provided via
third-party applications.

David installs a third-party application on his TV to receive movie recommen-
dations based on data aggregated from other social TVs owned by friends. The data
can be movie ratings, movies watched recently, movies currently being watched,
explicit recommendations made by friends etc. Once the application is installed,
David’s TV starts crawling the Social Web to discover all of David’s friends and any
social TVs they may own. The social TV can also expand its search to a depth of
multiple levels in David’s social graph, e.g. to friends of friends. Then, the social TV
interacts with each of the discovered TVs to aggregate the data it needs for providing
recommendations. The social TV is able to perform all of these tasks autonomously,
while conforming to the terms imposed by any service it uses in the process. David’s
TV can also provide data to other social TVs, as long as the interaction complies
with David’s privacy policies.

In this scenario, David’s TV exhibits several properties: it is autonomous, that
is to say it can function with minimal intervention from its owner, it exhibits goal-
driven behavior, such as determining and performing a course of action to provide
movie recommendations to David, it is aware of and conforms to regulations, such
as the ones imposed by terms of service or David’s privacy policies, and it is social,

1STN is an acronym for socio-technical network, a concept that we define formally in Chapter 6.

5.1. Application Scenarios 59

in the sense that it is part of an open society in which it can interact with other
social things in a flexible manner.

The ecosystem in which social things coexist in this scenario exhibits two prop-
erties that are central to the application for movie recommendations. First, the
ecosystem is sustained by heterogeneous platforms (e..g, existing social platforms),
however, David’s social TV is able to operate seamlessly across all these platforms
(cf. Limitation 1 in Section 1.1). Second, the ecosystem supports discoverability
(cf. Limitation 2 in Section 1.1), which enables David’s social TV to discover and
interact with other social TVs in a flexible manner (cf. Limitation 3 in Section 1.1).

5.1.2 Flexible interaction: The wake-up call

It is 9:00 AM and David has a meeting scheduled in one hour. However, according to
his social wristband and smart mattress cover, David is still asleep. His online social
calendar implements a behavior that enables it to interact with other social things
owned by David in order to wake him up. For instance, David’s social wristband
can try to wake him up at any time via vibration alarms, his social curtains can try
to wake him up if there is light outside and the curtains are closed, his social lights
can try to wake him up if the curtains are closed or if it is dark outside, and his
social smartphone can try to wake him up at any time via sound alarms. David also
has a preference for the order in which he should be woken up: he would choose at
any time vibration alarms and natural light over artificial light or sound alarms.

David’s social calendar first has to determine which of David’s social things
can wake him up. If David is away on a business trip, for instance, then it would
make little sense to try to wake him up via his social curtains or social lights at
home. In this particular case, however, given that David’s mattress cover also
supports the claim that he is asleep, it is very likely that David is sleeping at home.
The outside light sensor indicates that the light level is well over 1000 lux (S.I.),
and thus it is a sunny day2. The curtains are closed. After “talking” to David’s
social things, the social calendar determines that David’s wristband, curtains, lights
and smartphone could all try to wake him up. Per David’s preferences, the social
calendar asks David’s wristband for a first attempt. The calendar relies, once again,
on information provided by the wristband and mattress cover to determine if the
attempt is successful or not. Should the attempt fail, the calendar escalates the
alarm type used with each new attempt.

This application scenario stresses the ability of David’s social things to interact
in a flexible manner (cf. Limitation 3 in Section 1.1): heterogeneous social things
are able to coordinate on-the-fly in order to determine which of them can wake up
David, and do so in accordance with his preferences. Furthermore, the wake up
feature should not break if David replaces his wristband or lightbulbs with prod-
ucts from different vendors. This scenario also highlights new abilities exhibited by
David’s social things: they can interpret and react to relevant information in their

2According to light levels provided by http://www.engineeringtoolbox.com/light-level-rooms-
d 708.html, Accessed: 03.10.2015.

60 Chapter 5. A Layered Architecture for the Social Web of Things

environment, and they are rational, that is to say they are able to make decisions
and act upon them.

5.1.3 Remote interaction: The laundry room

Andrei is a Ph.D. candidate who lives in a student house in Saint-Étienne. The
building has 6 floors, each floor with 20 studios and one laundry room. Each laun-
dry room contains one washing machine and one dryer.3 Andrei is usually caught up
with work during the week, for which reason he typically takes care of his laundry
during weekends. Unfortunately, so are most people living in the student house,
and thus the laundromats typically get crowded on Saturdays and Sundays. Fur-
thermore, due to the noise caused by the washing machines, which disturbs students
living in adjacent rooms, the laundromats may be used only within specific hours.
Occasionally, some machines may be out of service, or the payment units may fail or
get jammed with coins. On other occasions, students forget or ignore the estimated
time for washing or drying their clothes and do not return to retrieve them, thus
blocking the machines without a way of being notified by others. All these factors
sum up to a bad user experience. On a typical laundry day, Andrei has to make
several trips to find a laundry room with a washing machine that is operational and
available, either on his floor or on a different floor.

The administration has decided to replace all washing machines and dryers with
a new generation of social machines that can interact with students via social plat-
forms. It is worth to note that the machines can be heterogeneous: they can be
produced by various vendors and they can be replaced over time. When a stu-
dent registers at the administration, he indicates a preferred social platform that
supports things as full-fledged users, such as Twitter4. The machines then au-
tonomously connect with the student on the indicated platform such that they can
receive and reply to messages. For instance, Andrei can now use Twitter to discover
available machines or to book a time slot. To this purpose, Andrei posts a tweet,
and the washing machines reply with their availability. The washing machines can
also use social platforms to notify students, for instance, when the laundry is done
or to remind them that they have yet to pick up their laundry.

In this application scenario, students use online social platforms as a familiar
and uniform mechanism for remote interaction with heterogeneous machines (cf.
Limitation 4 in Section 1.1).

5.1.4 Coordination: A welcoming home

David is leaving his office after a long day. David’s car is connected to his STN
Box at home and can access it from anywhere. When David gets in his car, the car
notifies all his other social things at home that he is to arrive in about 30 minutes.

3As the name of our character might already hint, it is worth to note that this scenario is, in
fact, modeled after a real situation encountered by this Ph.D. candidate.

4On Twitter, “users can be anyone or anything”: https://dev.twitter.com/overview/api/users/,
Accessed: 03.10.2015.

5.1. Application Scenarios 61

David’s social things coordinate to prepare a warm welcome. His vacuum cleaning
robot checks the last time it vacuumed the place and, if necessary, starts vacuuming.
The thermostat, which is typically on energy saving mode, starts warming up the
place to David’s preferred ambient temperature. When the car notifies David’s
social things that they have just arrived, the sound system plays David’s preferred
ambient music and, depending on the outside light level, either the curtains open,
or the lights turn on and any open curtains close (David prefers that whenever
the lights are turned on in the evening, the curtains are closed). The social things
keep logs on David’s STN Box for all the actions they take. The logs are organized
as human-readable threads of messages, similar to the ones encountered on social
platforms, such that David can inspect the logs at any time and understand with
ease the reasons behind changes in his home environment. Furthermore, the STN
Box provides an interface that allows David to specify a desired state for his home
environment, leaving it to his social things to coordinate and achieve the given state.

Similar to the application scenario presented in Section 5.1.2 (“The wake-up
call”), this scenario emphasizes the ability of David’s heterogeneous social things
to interact in a flexible manner and coordinate to achieve a common goal, that is
preparing the house for David’s arrival (cf. Limitation 3 in Section 1.1). However, in
this scenario the interaction is more complex, and the common goal can be decom-
posed in subgoals, such as vacuuming the house or setting the ambient temperature,
that may be subject to temporal operators (e.g., goals can be achieved in parallel,
in sequence). It is worth to note, once again, that David’s social things are aware
of his preferences, such as closing the curtains in the evening. This scenario also
stresses the need for mechanisms that enable people to keep track of interactions
in smart environments, such as David’s home, but also mechanisms for managing
heterogeneous things (cf. Limitation 4 in Section 1.1).

5.1.5 Discussion

The application scenarios presented in this section depict an open and self-governed
IoT ecosystem that is composed of people and social things situated and interacting
in a global environment that spans across the physical-digital space. The environment
facilitates discoverability and flexible interaction between entities in the ecosystem.
The envisioned IoT ecosystem is able to cope with the heterogeneity of the social
things inhabiting the environment and of the platforms sustaining the environment.
We further detail these properties in what follows.

David’s social things are autonomous and social, and they are first-class citizens
of an open society of people and social things in which they autonomously manage
their interactions, coordinate in the pursuit of common goals, and are aware of norms
applicable within the society, such as David’s privacy policies. It is also worth to
note that David’s social things are aware of their surroundings and able to react to
relevant events, such as David heading home, by making decisions and acting upon
them.

Things’ autonomy and social ability determine two important characteristics of

62 Chapter 5. A Layered Architecture for the Social Web of Things

the envisioned IoT ecosystem as a whole: it is an open ecosystem in which both
people and social things can join or leave the ecosystem at any given moment,
and once they join they can autonomously interact with other entities; it is a self-
governed ecosystem, in the sense that social things operate with minimal human
intervention, however, without causing security and privacy violations, or exhibiting
any unwanted behavior that can be otherwise regulated.

People and social things coexist in an environment consisting of a physical di-
mension and a digital dimension that interweave and augment one another. The
two dimensions interweave via sensors and actuators: IoT applications can use the
former to collect input and interpret the physical world, for instance to determine if
David is sleeping, and the latter to reflect back into the physical world, for instance
to wake David up. The two dimensions can augment one another in various ways.
On the one hand, for instance, services running in the digital space can manipulate
David’s home to provide a warm welcome after a long day at work. On the other
hand, a vacuum cleaning robot, whose logic “lives” in the digital space, could solicit
the physical intervention of a human for repairs. In a different example, David can
meet new people in the physical world and reflect such events in the digital world
via his online social platforms. David’s social things can then use the newly created
relations to augment their search in the digital space, such as David’s social TV
searching for other TVs owned by David’s friends. In the same time, David can
meet new people in the digital world via his online social platforms, which may
augment David’s relations in the physical world.

The environment is global in the sense that it is an Internet-scale system that
transcends geographical and organizational boundaries. For instance, David’s car
can access and use his STN Box, i.e. a WoT home hub, regardless of its current
location, and David’s social TV can access and use any online social platform. It
is worth to note that we consider non-social things, such as David’s smart mattress
cover or outside light sensor, as being part of the environment.

The environment facilitates discoverability in the sense that it enables people and
social things to discover other entities and relations among entities in the ecosystem.
David’s social TV, for instance, is able to discover David’s friends and any social
TVs they own.

The environment facilitates flexible interaction between social entities in the
sense that people and social things can use the environment to decouple their inter-
action, for instance, via brokers: Andrei and the washing machines use Twitter as a
central broker for posting and replying to tweets, leaving it to Twitter to deliver the
messages to his followers. It is worth to note that discoverability is also a means for
achieving flexible interaction: David’s social TV can crawl the ecosystem to discover
other social TVs it can interact with.

We continue to refer to the application scenarios presented in this section through-
out the rest of this chapter. It is worth to note that we implement these application
scenarios in Chapter 9 in order to evaluate our contributions.

5.2. Principles 63

5.2 Principles

In this section, we distill the properties discussed in the previous section into a set of
requirements for bringing about the envisioned IoT ecosystem, and propose a set of
principles to address these requirements. In Section 5.2.1, we define the foundational
principles on which we build our approach. We present the general design principles
that shape our proposal in Section 5.2.2. The foundational principles define the
underpinning of our proposal, and the general design principles guide the various
choices we make along the way.

5.2.1 Foundational principles

We base our proposal for an architecture for the envisioned IoT ecosystem on four
foundational principles: conformity to the REST architectural style, social connectiv-
ity, autonomy, and regulation. Per our discussion in Section 5.1.5, we apply the first
two principles to create a global environment that spans across the physical-digital
space and supports discoverability, and the last two principles to enable things as
first-class citizens of the envisioned self-governed IoT ecosystem.

It is worth to note that the foundational principles we put forward in this section
are the most fundamental statements that we consider to be true and on which we
base our approach. We validate these statements and our approach in Part III of
this dissertation.

5.2.1.1 Conformity to the REST architectural style

In the envisioned IoT ecosystem, people and social things are situated and interact in
a global environment that is sustained by heterogeneous platforms and spans across
the physical-digital space. A global environment emphasizes the need for scalability
in terms of numbers of components sustaining the environment, interactions among
those components, and interactions between the environment and its inhabitants.
A global environment must also be able to cope with the evolvability of the overall
ecosystem, that is to say the independent deployment and evolution of social things
and environment components. Scalability and evolvability are two of the architec-
tural properties, among others, that are emphasized by the REST architectural style
(see Section 2.1.1 for more details). The WoT initiative is already proposing to ap-
ply REST in order to interconnect IoT devices and services at the application layer
(see Section 2.4), therefore bridging the physical and digital worlds. We build on
this initiative and formulate our first foundational principle as follows:

Foundational Principle 1 (Conformity to REST). The REST architectural style
provides a means to create a global environment for the envisioned IoT ecosystem.

A feature that is central to REST is having a uniform interface between archi-
tectural components. The uniform interface hides implementation details such that
components are loosely coupled to one another, which in turn allows them to be
deployed and to evolve independently. Evolvability is essential for the envisioned

64 Chapter 5. A Layered Architecture for the Social Web of Things

IoT ecosystem, for instance, such that social things do not have to be manually con-
figured against each platform in their environment, or such that social things do not
break easily as platforms evolve. It is worth to note, however, per our discussion in
Section 2.1.2, that existing Web platforms, which includes social platforms and WoT
platforms such as the ones in our application scenarios, generally provide APIs that
violate the uniform interface constraint (cf. Section 2.2.1 and Section 3.1.3). There-
fore, if social things are to inhabit a global environment sustained by heterogeneous
platforms, our approach has to provide solutions to integrate in this environment
platforms with non-uniform APIs.

5.2.1.2 Social connectivity

The environment of the envisioned IoT ecosystem facilitates discoverability (see
Section 5.1.5). In a global ecosystem expected to accommodate billions of people5

and billions of things6, discoverability implies that the environment must be able to
interconnect the ecosystem in an effective and flexible manner.

REST already enforces general connectivity among resources via navigable rela-
tions (cf. uniform interface constraint in Section 2.1.1). For instance, this constraint
enables discoverability on the Web via hyperlinks. We suggest that more effective
connectivity can be achieved in the envisioned IoT ecosystem by having specialized
relations, that is to say relations using standard relation types, between people and
things, that is to say resources using standard resource types (cf. Section 2.3). Stan-
dard types enable machines to reliably interpret information in the environment in
order to perform informed searches, which may be useful, for instance, to perform
specialized searches or to provide real-time search results, an important challenge
in the WoT (see Section 3.2.2.2). For example, David’s social TV in Section 5.1.1
is able to reliably discover other social TVs that are owned by David’s friends. In
other words, while general connectivity is already enforced in a RESTful environ-
ment, specialized relations would serve as “information highways” in the ecosystem,
leading to more effective connectivity. To achieve flexible connectivity, the environ-
ment must also facilitate the manipulation of these information highways.

Per our discussion in Section 2.2, it is worth to note that online social networks
are already changing the way in which information is interconnected and dissemi-
nated on the Web. Furthermore, a basic functionality provided by most online social
platforms to their users is to manage relations with people and entities in general,
therefore providing flexible connectivity.

We propose that we can address the need for effective and flexible connectivity
in the envisioned ecosystem by extending and applying the social network metaphor
to the IoT, and formulate our second foundational principle as follows:

5For instance, as of June 30, 2015, Facebook reports 1.49 billion monthly active users
(http://newsroom.fb.com/company-info/).

6Analysts expect more than 50 billion of connected devices by the end of
2020 [MacGillivray 2013].

5.2. Principles 65

Foundational Principle 2 (Social connectivity). The social network metaphor
provides a means to enhance discoverability in the envisioned IoT ecosystem.

It is also worth to note that social platforms provide a means to decouple in-
teraction between their users by operating as central brokers. For instance, in Sec-
tion 5.1.3, Andrei posts a “tweet” to signal his intention to do his laundry, leaving
it to Twitter to route the message to washing machines following Andrei. Further-
more, per our discussion in Section 3.4.1, online social networks have been identified
as good candidates to provide people with familiar user interfaces to manage and
interact with heterogeneous IoT applications in a uniform manner.

5.2.1.3 Autonomy

A self-governed IoT ecosystem (see Section 5.1.5) emphasizes the need for things that
can function with minimal human intervention. David’s social things, for instance,
can autonomously react to changes in their environment or manage their interactions
with other social entities. Endowing things with autonomous behavior is central to
the envisioned IoT ecosystem and a cornerstone of our approach. Per our discussion
in Chapter 4, multi-agent research provides a vast amount of models and technologies
for programming autonomous agents and systems of autonomous agents.

We formulate our third foundational principle as follows:

Foundational Principle 3 (Autonomy). Autonomy is a means to enable things
as first-class citizens of the envisioned IoT ecosystem.

It is worth to note that autonomy is a broad concept. We discuss in further
detail how we apply this concept in our proposal in Section 5.3.

5.2.1.4 Regulation

In a self-governed ecosystem, the behavior of autonomous entities must be sus-
ceptible to regulation mechanisms. Furthermore, in an open ecosystem, no prior
assumptions can be made about the behavior of autonomous entities, which stresses
the need for enforcement mechanisms. Multi-agent research provides various means
for enforcing regulation in systems of autonomous agents (see Section 4.3 for more
details).

We formulate our fourth foundational principle as follows:

Foundational Principle 4 (Regulation). Regulation is essential to create a self-
governed IoT ecosystem.

We consider autonomy and regulation to be two facets of the same coin. Without
regulation, autonomy is potentially dangerous. Without autonomy, regulation is not
needed.

66 Chapter 5. A Layered Architecture for the Social Web of Things

5.2.2 General design principles

The foundational principles presented in the previous section provide the underpin-
ning of our approach. The general design principles that we present in this section
guide the various choices we make to define our proposal. We rely on three design
principles, namely generality, separation of concerns, and interoperability, which we
discuss in what follows.

5.2.2.1 Generality

The envisioned IoT ecosystem must be able to cope with the heterogeneity of things
and platforms. Heterogeneity mandates the use of general solutions to facilitate
the integration of existing systems and to preserve the design and implementation
autonomy of new systems and applications. Generality is a design principle that
is central to our approach and to the successful development and adoption of the
envisioned IoT ecosystem.

5.2.2.2 Separation of concerns

The envisioned IoT ecosystem must be extensible such that it can easily adapt
and evolve over time, in particular in the rapidly changing landscape of the IoT
(e.g., to benefit from emerging WoT protocols and standards). Furthermore, an
approach based on general solutions must be extensible such that it can respond
to domain- and application-specific requirements. Extensibility motivates the need
for separating the concerns of the overall system into modules that can be easily
exchanged or extended.

An important requirement for the successful adoption of the envisioned IoT
ecosystem is to achieve a low entry-barrier for the development and use of applica-
tions. Given the complexity of the overall ecosystem, it is thus necessary to provide
developers and users with abstractions that enable them to cope with the envisioned
complexity. In the presented application scenarios, for instance, it is useful to ab-
stract and separate the behavior of social things from their implementation such
that developers can program heterogeneous things in a uniform manner.

5.2.2.3 Interoperability

A software system that is to be long-lived, global and open, in which components can
be deployed and can evolve independently from one another, must rely on standards
and knowledge in easily standardizable forms in order to ensure interoperability
among its various components. This principle is best demonstrated by the REST
architectural style and its most well-known implementation, the World Wide Web.

5.3. Layered Architecture 67

5.3 Layered Architecture

In this section, we reason up from the foundational principles defined in Section 5.2.1
and apply the general design principles presented in Section 5.2.2 to define an ar-
chitecture for the IoT ecosystem described in Section 5.1.5.

Our proposed architecture is depicted in Figure 5.1. Per Foundational Principle 1
(conformity to REST), the proposed architecture conforms to the REST architec-
tural style and we use the World Wide Web7 as a primary means to implement
and deploy the envisioned IoT ecosystem on a global scale (cf. WoT layer in Fig-
ure 5.1). For this reason, henceforth, we refer to this ecosystem as the Social Web of
Things (SWoT).8 It is worth to note, however, that the proposed architecture does
not depend on Web technologies or a particular protocol stack, which makes our
architecture future-proof, that is to say unlikely to become obsolete in the future.

The SWoT architecture is structured along four layers, from bottom to top
(cf. Figure 5.1): Agency, Social, Normative, and Application, where the Social and
Normative layers are optional. The main motivation behind the proposed layering
is the separation of concerns principle (cf. Section 5.2.2.2). We discuss and motivate
each layer in the rest of this section.

Figure 5.1: Our proposed layered architecture for the SWoT. We use numbers to
identify agents and artifacts at the Agency layer with their associated user accounts,
respectively digital artifacts at the Social layer. The icons representing user accounts
and digital artifacts depict their hosting platforms in the lower right corner.

For illustrative purposes, Figure 5.1 depicts a partial representation of the “Social
TV” scenario (see Section 5.1.1) and illustrates the various abstractions introduced
by each layer. David and Sophia own an STN Box and a social TV. David also has
a friend that owns an STN Box and a social TV. The “external environment” refers
to all entities in the physical world, such as David and his family (i.e., a group).

7For instance, via its various facets discussed in Chapter 2.
8Our choice for the name of this ecosystem also highlights the central role played by the en-

dowment of things with social behavior, which we discuss in Section 5.3.2.

68 Chapter 5. A Layered Architecture for the Social Web of Things

Entities are abstracted at the Agency layer as agents and artifacts.
At the Social layer, relations among agents and artifacts are externalized in the

environment and stored on various platforms (e.g., STN Boxes, Facebook, Twitter).
These explicitly represented relations interconnect digital counterparts of agents and
artifacts, which we call digital artifacts. The digital counterparts of agents are user
accounts, which are a type of digital artifact. The relation between David and his
friend is represented explicitly as a cross-platform relation.

At the Normative layer, externally defined norms can apply to various roles
enacted by agents to regulate their autonomous behavior.

The concepts introduced in this section are defined formally in Chapter 6.

5.3.1 Agency layer

The Agency layer endows things with autonomy (per Foundational Principle 3) and
abstracts entities in the SWoT as agents and artifacts, abstractions inspired by the
Agents and Artifacts (A&A) meta-model (see Section 4.2.1). Our aim is to benefit
from the vast amount of models and technologies provided by multi-agent research
(see Chapter 4).

5.3.1.1 Agents and artifacts

We introduce the agent and artifact abstractions to separate exhibited behaviors
from the actual entities in order to provide a uniform means of conceiving of people
and heterogeneous things. In the SWoT, a thing can be any non-human entity worth
modeling: physical (e.g., a lightbulb or a book), digital (e.g., an e-mail) or abstract
(e.g., a research group).

The ecosystem is then composed of agents situated and interacting in a global
environment, where the environment is represented as a dynamic set of artifacts,
possibly organized in subsets, that agents can use to perceive and act on the physical
and digital worlds, possibly by composing multiple artifacts to achieve new function-
ality (cf. A&A meta-model in Section 4.2.1). Therefore, in addition to separating
behaviors from their implementations, the agent and artifact abstractions are also
useful to separate the logic of agents from logic embedded in the environment, and
to model the environment in a modular manner such that it can easily evolve, for
instance via creating or deleting artifacts.

We conceive of people and things designed to inhabit the environment as first-
class citizens of the SWoT and model them as agents. A defining characteristic of
first-class citizens is their ability to autonomously interact with other entities in the
SWoT. We conceive of things designed to be part of the environment as second-class
citizens of the SWoT and model them as artifacts. Therefore, things can be modeled
as either agents or artifacts, depending on their design purpose.

It is worth to note that in the A&A meta-model agents and artifacts are defined
as first-class entities (cf. Section 4.2.1). In the SWoT, however, we define the
dichotomy between first- and second-class citizens not from a software engineering

5.3. Layered Architecture 69

perspective, but rather from the perspective of an external observer and based on
the behavior exhibited by entities in the SWoT. The behavior exhibited by artifacts
is typically much more limited than the one of agents inhabiting the environment,
and thus we treat artifacts as second-class citizens of the SWoT. For example, the
social TVs in Section 5.1.1 can navigate the environment to discover one another,
and they can use the environment to persist and exchange messages, such as movie
ratings via a platform designed for this purpose. We conceive of the social TVs
as first-class citizens, and of the messages persisted in the environment, which are
digital things modeled as artifacts, as second-class citizens.

5.3.1.2 Artifact-oriented interfaces

We have defined the environment as a dynamic set of artifacts. Some artifacts
are non-persistent and, for instance, exist only within the running context of one
or more agents, while other artifacts are persisted in the environment by means
of platforms. Per our discussion in Section 5.2.1.1 (conformity to REST), it is
central to the successful development of the SWoT to integrate in the environment
heterogeneous platforms, such as existing social and WoT platforms. To address
this issue, we have to provide solutions to achieve uniform interfaces for the APIs
of heterogeneous platforms.

Our proposal is to abstract heterogeneous APIs by means of dynamic sets of
artifacts, such as user accounts or messages, to create artifact-oriented interfaces.
The interfaces resulting from the abstraction process have to be hypermedia-driven
in order to conform to the uniform interface constraint (cf. Section 2.1.1). In other
words, we abstract heterogeneous platforms by a layer of artifacts interconnected
by typed relations. We discuss our approach in detail in Chapter 7.

What is achieved is a loose coupling between software clients and heterogeneous
platforms in the ecosystem, where a software client can be a browser (i.e., a proxy
for people), a software agent, or a multi-agent middleware (i.e., a proxy for one or
more agents). Clients still need prior knowledge in order to reliably interpret and
manipulate artifacts. We mitigate this aspect by applying the three design prin-
ciples presented in Section 5.2.2 to decouple clients from platforms. We apply the
generality and separation of concerns principles to define general artifact-oriented
interfaces for specific domains, such as social platforms, that can be easily extended
to satisfy subdomain- and application-specific requirements, and we apply the inter-
operability principle such that any domain-specific knowledge required to reliably
interpret and manipulate artifacts is provided in easily standardizable forms, such as
vocabularies or implementation guidelines (see Chapter 7 for further clarifications).
We introduce one such general interface for social platforms when we discuss the
Social layer in Section 5.3.2.2.

70 Chapter 5. A Layered Architecture for the Social Web of Things

5.3.2 Social layer

The Social layer applies the social connectivity principle (per Foundational Princi-
ple 2) to externalize the relations among agents and artifacts into the environment.
Externalized relations use standard types (e.g., friendship, ownership, provenance,
colocation) such that they can be reliably interpreted and manipulated by both
people and machines. This layer is optional. The separation of concerns it intro-
duces simplifies the business logic of SWoT applications, enhances discoverability
and enables flexible interaction in the SWoT.

5.3.2.1 A world-wide socio-technical graph

We refer to structures of agents and artifacts interconnected by means of typed rela-
tions as socio-technical graphs (STGs). STGs can be persisted in the environment,
and possibly distributed across multiple platforms. We conceive of all STGs in the
SWoT to form a world-wide, but not necessarily connected, socio-technical graph.

For example, in Figure 5.1 we illustrate these abstractions for the scenario in
Section 5.1.1 (“The social TV”). David, his family, and their things are intercon-
nected in an STG representing David’s household, which is hosted on David’s STN
Box. Furthermore, David’s STN Box is an open platform, and it allows David to
add relations to agents in STGs hosted on other platforms, such as friends having
their own household STGs and STN Boxes (cf. Figure 5.1). All household STGs
are thus interconnected into a single STG distributed across multiples STN Boxes.

In addition, David also uses several social platforms, such as Facebook or Twit-
ter, and each social platform hosts its own STG (cf. Figure 5.1). However, these
platforms are closed and their STGs are disconnected from the household STGs.
The problem, then, is that David’s social TV cannot autonomously discover these
STGs starting only from David’s household STG.

The above example emphasizes the need for means to enable connectivity across
disconnected STGs in order to enhance discoverability in the SWoT. It is worth
to note that connectivity in the SWoT is closely related to the uniform interface
constraint (cf. Section 2.1.1). We discuss this issue in further detail in Chapter 7.

5.3.2.2 Social artifacts

Following our previous example, the world-wide STG can be distributed across mul-
tiple heterogeneous and possibly closed platforms. Per our discussion in Section 5.3.1
on artifact-oriented interfaces, we model the APIs of heterogeneous platforms in
terms of artifacts, and define five types of social artifacts that agents can use to
access and manipulate the world-wide STG: user accounts, digital groups, digital
places, digital messages, and SWoT profiles. We use the first four to provide general
artifact-oriented interfaces for social and socio-technical platforms, and the latter
to enhance connectivity in the SWoT. We motivate our choice for these particular
types of social artifacts and provide formal definitions in Chapter 6.

5.3. Layered Architecture 71

User accounts represent digital counterparts of agents, and a software client
acting via a user account is assumed to have been delegated by and acting for the
user account’s holder. Agents may hold multiple user accounts on various platforms.
A user account typically holds all the information associated to an agent that is
hosted by a given platform, such as an agent’s relations. Relations in the SWoT can
be established between entities (e.g., similar to FOAF networks in Section 2.2.3), or
any user accounts they may hold, as it is generally the case in existing online social
networks. Agents can thus crawl the world-wide STG by retrieving user accounts
and navigating the relations they provide.

Digital groups represent digital counterparts of groups of agents. In its simplest
form, a group is a set of agents, however it can also be defined by more complex
social structures, such as the ones typically modeled in multi-agent organizations
(see Section 4.3.3) by means of roles, relations among roles, subgroups, or power
structures.

Digital messages represent digital counterparts of messages, the latter being
interpreted as an abstract entity. For instance, a spoken message in the physical
world can be reified and disseminated in multiple forms in the digital world, such
as via an audio recording or reproduced as text.

Digital places represent digital counterparts of physical places and are necessary
for anchoring STNs in the physical world, for instance, to attach a location to a
message created by an agent.

SWoT profiles aggregate meta-information about agents in the SWoT, such as
the user accounts they hold, and thus provide a means to construct an agent’s
distributed profile and increase connectivity in the SWoT. An agent typically has a
single SWoT profile. For instance, David’s social TV can use David’s SWoT profile
to autonomously discover all of his user accounts on various platforms. David’s
friends can also advertise their SWoT profiles on Facebook or Twitter in various
ways (e.g., via their personal website), which would enable David’s TV and other
social things to discover their STN Boxes and interact with the things they own.

5.3.2.3 Flexible interaction

The social connectivity principle can be applied to interconnect entities in the SWoT
via static or human-managed relations. However, given that agents are autonomous,
they can also autonomously use and manipulate relations with other entities, which
leads to flexible interactions. For instance, when David installs his newly acquired
social TV (see Section 5.1.1), the TV can crawl David’s home STN to discover other
things owned by David and display them in a dashboard. Furthermore, it can crawl
David’s STG to discover social TVs owned by David’s friends. If the TV encounters
things of interest while crawling, it can add them to its STG such that it can reach
them more easily in the future. Flexible interaction is central to our vision for
the SWoT and an important consequence of the autonomy and social connectivity
foundational principles.

Furthermore, as noted in our discussion of the social connectivity principle (see

72 Chapter 5. A Layered Architecture for the Social Web of Things

Section 5.2.1.2), social and socio-technical platforms can function as central bro-
kers that decouple communication between their users, which further simplifies the
business logic of SWoT applications and enhances the flexibility, observability and
controllability of interactions. SWoT applications are simplified because they do
not have to deal with concerns of data storage and message routing. Flexibility
is improved because agents can use platforms for one-to-many and many-to-many
interactions, leaving it to the platforms to route messages based on relations al-
ready established in the STG. For instance, members of the same group or agents
interested in the same topic do not have to be directly connected to one another in
the STG. Observability is improved because all interactions pass through a central
broker, which can be useful, for instance, to display them to the things’ owners
and thus improve SWoT usability, or to monitor norms that regulate interactions.
Controllability, a dual aspect of observability, is improved because the brokers can
apply norms, such as user-defined privacy policies, to regiment interactions or apply
sanctions.

5.3.3 Normative layer

The Normative layer is concerned with expressing, monitoring and enforcing norms.
This layer is optional. Nevertheless, externally defined regulation is central to create
a global and self-governed SWoT (per Foundational Principle 4). It is worth to note
that regulation can also be achieved at the Agency layer by hard-coding rules into
agents, and at the Social layer via social control mechanisms (see Section 4.3.2).

5.3.3.1 Norms

We conceive of norms as deontic statements intended to regulate the autonomous
behavior of agents. At the Normative layer, agents become norm-aware in the sense
that they can interpret and reason on externally defined representations of norms.
Agents, however, are also autonomous and heterogeneous, and some might decide
to conform to norms, while others might choose to violate norms, which motivates
the need for enforcement mechanisms. Per our discussion in Section 4.3, multi-agent
research provides several models that can be used to express, monitor and enforce
norms.

For instance, David’s social TV should be able to retrieve and reliably interpret
a platform’s rate limiting policies and terms of service9 to navigate across the SWoT.
Autonomous vehicles should be able to dynamically obtain and interpret the driving
regulations that apply to their current country or region. For another example,
David’s social things should be able to reliably interpret privacy policies defined by
David that affect the dissemination of information into the SWoT.

In the above examples, norms are used to restrict the actions of agents and
interactions among them. Norms, however, can also be used to incentivize agents to

9It is worth to note, for instance, that Twitter provides API access to its terms of service as
unstructured text and to retrieve the rate limit status of an application as structured data.

5.3. Layered Architecture 73

take action. The latter can be used by externally defined coordination mechanisms,
for instance to coordinate David’s social things to achieve common goals, such as
preparing the house for David’s arrival (see Section 5.1.4).

5.3.3.2 Normative artifacts

In the SWoT, externally defined norms and enforcement mechanisms are encapsu-
lated in normative artifacts. Normative artifacts can be created and used by agents
at run-time, for instance via a multi-agent middleware such as the one we use in
Chapter 9, or they can be persisted in the environment and hosted on platforms,
similar to the social artifacts introduced in Section 5.3.2.2. However, we recognize
that defining a general, uniform interface for working with normative artifacts is a
complex endeavor and we leave this as future work (see Chapter 10).

5.3.4 Application layer

The Application layer is concerned with the business logic of SWoT applications. We
use the term “SWoT application” loosely to refer to any software for end-users, which
may be developed in terms of agents and artifacts or by extending the behavior of
existing ones. For an illustration of the latter, in the scenario in Section 5.1.1 (“The
social TV”), David installs an application on his TV to extend its behavior such
that it can crawl the SWoT and aggregate data to provide movie recommendations.

The added benefit of the various layers introduced in our architecture is that,
given the proper tools, developers can focus their effort on programming behaviors
at a high level of abstraction. We support this claim with the results presented in
Chapter 9, where we implement the application scenarios presented in Section 5.1
using an extension of the JaCaMo multi-agent platform [Boissier 2013]. Another
benefit of the proposed abstractions is that they support the development of ex-
tensible IoT applications. For instance, if David’s social TV is programmed as a
practical BDI agent [Bordini 2007], then extending its behavior could consist in
providing it with a set of plans, which the TV might also be able to obtain au-
tonomously from other agents or from a repository of plans. It is worth to note that
dynamically extending the behavior of software agents at run-time is in accordance
with the code-on-demand constraint defined by the REST architectural style (see
Section 2.1.1).

It is also worth to note that the various means of achieving regulation provided
by the previous three layers can be used in conjunction in SWoT applications. For
instance, David could define privacy policies to regulate the information his social
things are permitted to disseminate into the SWoT. The privacy policies are defined
at the Normative layer. Agents that can interpret David’s policies are then able
to determine if a message is subject to a privacy violation, and they can enforce
privacy preservation via hard-coded rules (i.e., at the Agency layer) aimed to stop
and prevent violations, such as:

74 Chapter 5. A Layered Architecture for the Social Web of Things

1. Do not disseminate messages that are subject to privacy violations such that
the violations are not propagated.

2. If a message received from another agent is subject to a privacy violation,
delete the message and enforce social control by informing others about the
violation.

At the Social layer, social control mechanisms can be used to gradually isolate
recurring violators from the SWoT, for instance by breaking relations and com-
munication with the violators. This example is based on a previous project we
have been involved in, the PrivaCIAS framework [Krupa 2012] for privacy preser-
vation in online virtual communities, and we have used this approach to implement
a privacy-aware, open and decentralized photo-sharing social network for smart-
phones [Ciortea 2012].

5.4 Summary

In this chapter, we addressed Research Question 1, that is how to bring systems of
autonomous things to the Web of Things. To this purpose, we proposed an archi-
tecture for a global IoT ecosystem that enables autonomous things as its first-class
citizens. Autonomy is central to our proposal and provides the means to transcend
the IoT limitations identified in Part I.

In Section 5.1, we introduced several application scenarios to illustrate the en-
visioned IoT ecosystem and define its properties. In Section 5.2, we distilled these
properties into requirements for bringing about the envisioned ecosystem and, to
address these requirements, we formulated a set of foundational principles that pro-
vide the underpinning of our proposal. In other words, the foundational principles
are the most fundamental statements we consider to be true and on which we base
our approach. We reason up from these statements, guided by a well-defined set of
design principles, to build our proposal in Section 5.3. Our investigation comes full
circle in Part III: in Chapter 9, we validate our foundational principles and proposal
by implementing the application scenarios introduced in this chapter.

A central feature of the envisioned IoT ecosystem is the flexible interaction
between its first-class citizens, which we achieve by applying the autonomy and social
connectivity principles to enable agents to autonomously manage their relations and
interactions with other entities. In Section 5.3.2.2, we introduced informally a set of
social artifacts that agents can use to access and manipulate the world-wide socio-
technical graph. We formalize our discussion in Chapter 6. In Chapter 7, we discuss
solutions to create uniform interfaces in the SWoT by mapping artifact-oriented
interfaces, such as the ones defined via social artifacts, to the APIs of heterogeneous
platforms.

Chapter 6

A Model for Socio-technical
Networks

Contents
6.1 Modeling Dimensions . 76

6.1.1 Preliminary definitions . 76

6.1.2 The social dimension . 79

6.1.3 The normative dimension . 80

6.1.4 The spatial dimension . 80

6.1.5 The digital dimension . 81

6.2 Formal Definitions . 85

6.2.1 Structure . 85

6.2.2 Inferences . 87

6.2.3 Dynamics . 87

6.2.4 Norms . 88

6.3 Digital Socio-technical Networks 88

6.3.1 Entity and relation types . 89

6.3.2 Operation types . 89

6.3.3 Social artifacts . 92

6.4 Summary . 97

In the previous chapter, we introduced a layered architecture for the Social Web
of Things (SWoT). The essence of our approach is to endow things with auton-
omy (per Foundational Principle 3 in Section 5.2.1) and apply the social network
metaphor (per Foundational Principle 2 in Section 5.2.1) to create flexible networks
of people and autonomous things. We refer to these networks as socio-technical
networks (STNs). An STN spans across the four layers of the architecture proposed
in Section 5.3, and we conceive of STNs as the building blocks of the SWoT.

The purpose of this chapter is to provide a formal model for STNs. We introduce
and define the elements of our model in a top-down manner, from the most generic
to the most specific. In Section 6.1, we begin our presentation with an informal
overview of the various entities, organized in multiple modeling dimensions, that we
use to represent STNs. We formalize our discussion in the following sections. In
Section 6.2, we define a general and extensible mathematical model for STNs. This

76 Chapter 6. A Model for Socio-technical Networks

model is general in the sense that it can be used to create representations of hetero-
geneous STNs, such as a family or an online virtual community, at a high level of
abstraction. This model is extensible in the sense that it can be easily specialized to
represent domain-specific STNs. In Section 6.3, for instance, we specialize our STN
model to represent digital STNs, such as online social networks. The digital STN
model presented in this section provides formal definitions for the social artifacts
introduced previously in Section 5.3.2.2 and we use it in Chapter 7 as a mediated
model for the integration of heterogenous STN platforms.

6.1 Modeling Dimensions

Per the separation of concerns principle (see Section 5.2.2), we model STNs on
multiple dimensions, namely the social, normative, spatial and digital dimensions.
The social dimension is concerned with modeling relations and interactions among
agents (cf. Social layer in Figure 5.1). The normative dimension is concerned with
modeling normative concepts used to regulate the behavior of agents (cf. Normative
layer in Figure 5.1). The spatial dimension is concerned with anchoring STNs in
the physical space (cf. external environment in Figure 5.1). The digital dimension
is concerned with reifying STNs in the digital space.

In what follows, we first introduce several preliminary definitions, which we then
use to discuss each of the above modeling dimensions.

6.1.1 Preliminary definitions

For illustrative purposes, Figure 6.1 depicts an STN that models David’s household
at a given point in time. The Doe household includes David Doe and Sophia Doe,
who are spouses and form a family, and the house that they own and live in. We
use and elaborate on this example throughout the rest of this chapter. We illustrate
the digital dimension of the Does’ home STN in Section 6.1.5.

6.1.1.1 Basic entities of STNs

The STN depicted in Figure 6.1 is composed of multiple interconnected entities.
Entities of an STN can be anything worth modeling, such as persons (e.g., David
Doe and Sophia Doe), groups (e.g., The Doe family), physical objects (e.g., The
Does’ house), or concepts (e.g., Agent). It is worth to note that, per Foundational
Principle 1 (conformity to REST), all entities in the SWoT are uniquely identified
(cf. uniform interface constraint in Section 2.1.1).

Definition 6.1.1 (Entity). An entity is anything worth modeling within an STN.
It is uniquely identified in the SWoT.

Entities in an STN are interrelated in a meaningful manner by means of relations
of given relation types. For instance, in our illustration in Figure 6.1, David Doe is
the spouse of Sophia Doe, and The Doe family owns a house, i.e. Does’ House.

6.1. Modeling Dimensions 77

Figure 6.1: An illustration of the social, normative and spatial dimensions of the
Doe household at a given point in time. At the moment depicted in this figure, both
David and Sophia are at home.

Relation types, such as spouseOf or owns, enable people and machines to interpret
and reason upon relations.

Definition 6.1.2 (Relation). A relation is an entity that represents a unidirectional
connection of a given relation type between two entities.

Definition 6.1.3 (Relation type). A relation type is an entity that denotes a set of
common characteristics shared by a category of relations.

As hinted by our illustration in Figure 6.1, entities in an STN can also be assigned
one or more entity types via typing relations. The Does’ House, for instance, is typed
as an Artifact and a Spatial Entity via type relations.

Definition 6.1.4 (Entity type). An entity type is an entity that denotes a set of
common characteristics shared by a category of entities.

Definition 6.1.5 (Typing relation). A typing relation is a relation that associates
an entity type to an entity.

78 Chapter 6. A Model for Socio-technical Networks

Per our discussion of the Agency layer (see Section 5.3.1), two specific types of
entities in the SWoT are agents and artifacts. In Figure 6.1, for instance, David
Doe and Sophia Doe are modeled as agents, and The Does’ House is modeled as
an artifact. It is worth to note that some entities are neither agents, nor artifacts,
such as The Doe family, which represents a group of agents (see social dimension
in Section 6.1.2).

Definition 6.1.6 (Agent). An agent is an entity that is able to autonomously
interact with other entities in the SWoT. An agent can be either a human or software
entity.

In the application scenarios in Section 5.1, David owns multiple social things.
Social things are agents in the SWoT that are non-human. They can embed the
logic of a physical thing, such as David’s social TV in Section 5.1.1, or a digital
thing, such as David’s social calendar in Section 5.1.2. It is worth to note that a
social thing can be a composite application built on top of multiple things, that is
an IoT mashup.

Definition 6.1.7 (Social thing). A social thing is an agent that is non-human.

Agents can use artifacts to perceive and act on the physical and digital worlds.
In our illustration, for instance, David and Sophia live in a house, that is The Does’
House (cf. Figure 6.1). Agents can create mash-ups of artifacts in order to achieve
composite functionality. For example, if the Does’ Web-enabled lights and curtains
are modeled as artifacts, their social TV should be able to create a mash-up such
that if it dims the lights, the curtains close automatically. The social TV could then
use this mash-up, for instance, when a movie starts playing.

Definition 6.1.8 (Artifact). An artifact is an entity that agents can use in order
to perceive and act on the physical and digital worlds.

Per our discussion in Section 5.3.1 (the Agency layer), it is worth to note that
a thing can be modeled both as an agent and an artifact, depending on its design
purpose. Furthermore, the same thing can be modeled as an agent in one STN and
as an artifact in another.

6.1.1.2 Structure and dynamics of STNs

Having introduced all the basic entities of STNs, we define an STN as follows:

Definition 6.1.9 (Socio-technical network). A socio-technical network is a dynamic
and regulated system of agents and other entities interrelated in a meaningful man-
ner via relations.

An STN is dynamic in the sense that it evolves over time. An STN is regulated
in the sense that, per Foundational Principle 4 (regulation), the behavior of agents
in the STN is regulated. Entities in an STN are interrelated in a meaningful manner

6.1. Modeling Dimensions 79

in the sense that relations among entities are represented explicitly using standard
relation types such that both people and machines can reliably interpret and reason
upon them. Furthermore, entities in an STN are also assigned entity types.

In our discussion of the Social layer (see Section 5.3.2), we introduced socio-
technical graphs (STG). An STG represents a “snapshot” of an STN, that is to say
all the entities in the STN and relations among them at a given point in time. The
STG depicted in Figure 6.1, for instance, corresponds to a state of the illustrated
STN in which both David and Sophia are at home. Therefore, an STG exists only
within the context of an STN, and the evolution of an STN can be represented as
a succession of STGs. The world-wide STG (see Section 5.3.2) is then composed
of the interconnected STGs of all STNs in the SWoT, and each STG may evolve
independently.

Definition 6.1.10 (Socio-technical graph). A socio-technical graph is the state of
a socio-technical network at a given point in time.

An STG can evolve by means of operations performed by agents. Operations that
share common characteristics, such as common side effects on the STG on which
they are applied, can be abstracted via operation types. For example, members of
the Doe family can acquire things in two different ways: for their family, or for
themselves. If David, for instance, acquires a social TV for his family, this operation
can be reflected in the STG in Figure 6.1 by adding the social TV as a social thing
that is owned by The Doe Family. If David acquires a social wristband for himself,
the social wristband would be represented in the STG as a social thing that is owned
by David Doe. The STG resulting from the application of an operation represents
a new state of the STN.

Definition 6.1.11 (Operation). An operation is an atomic activity performed by
an agent on a socio-technical graph.

Definition 6.1.12 (Operation type). An operation type is an entity that denotes a
set of common characteristics shared by a category of operations.

Based on the primary definitions introduced thus far, in the following sections
we define the social, normative, spatial and digital dimensions of an STN.

6.1.2 The social dimension

The social dimension of an STN is represented explicitly by means of social relations,
groups and messages.

Social relations are relations established between two agents, such as the
spouseOf relations between David Doe and Sophia Doe in Figure 6.1. Per the social
connectivity principle (see Foundational Principle 2), their purpose is to enhance
discoverability in the SWoT.

Definition 6.1.13 (Social relation). A social relation is a relation established be-
tween two agents.

80 Chapter 6. A Model for Socio-technical Networks

Groups provide a means to represent structures of multiple agents. In its sim-
plest form, a group can represent a collection of agents, such as a collection of social
things owned by the Doe family. However, groups can also represent more complex
structures, for instance, by means of roles and relations among roles. For example,
in Figure 6.1, David Doe and Sophia Doe are members of a group denoting The Doe
Family in which they both enact the role Spouse. For another example, the roles
in this group could also include Parent or Child, where the former could have, for
instance, a relation of authority with the latter.

Definition 6.1.14 (Group). A group is an entity that represents a collection of
agents.

Definition 6.1.15 (Role). A role is an entity that represents a status that can be
enacted by an agent within the scope of a group.

Messages are pieces of information transmitted between agents. Messages can
take various forms and be transmitted in various ways, such as spoken messages
transmitted between David and Sophia or digital messages exchanged online.

Definition 6.1.16 (Message). A message is an entity that represents a piece of
information transmitted between agents.

The above examples are focused primarily on representing social relations and
interactions in the physical world. It is worth to note, however, that these social
relations and interactions can also be established and take place in the digital di-
mension, which we discuss in Section 6.1.5.

6.1.3 The normative dimension

The normative dimension of an STN is represented explicitly by means of norms.
Norms can be attached, for instance, to roles or agents. For example, in our illus-
tration in Figure 6.1, David and Sophia enact the role Spouse that conforms to a
norm defining marriage obligations, such as determining the owner of The Does’
house should the marriage break.

Definition 6.1.17 (Norm). A norm is an entity that denotes an explicit spec-
ification of deontic statements (i.e., obligations, permissions, prohibitions) whose
purpose is to regulate the behavior of agents.

It is worth to emphasize that agents are autonomous and can decide to violate
or comply to norms.

6.1.4 The spatial dimension

The spatial dimension of an STN is represented explicitly by means of spatial entities
and localization relations.

Spatial entities are entities in the SWoT that have spatial characteristics, such
as a position or a surface. Their purpose is to provide a means to anchor STNs in

6.1. Modeling Dimensions 81

the physical space. In Figure 6.1, for instance, David and Sophia are located at The
Does’ House, which is a Spatial Entity.

Definition 6.1.18 (Spatial characteristic). A spatial characteristic is any feature
that can serve as a reference point in the physical space.

It is worth to note that people have spatial characteristics, and thus are spatial
entities. David’s wristband, for instance, can be located on David’s wrist.

Definition 6.1.19 (Spatial entity). A spatial entity is an entity that has spatial
characteristics.

We refer to spatial entities that are non-human as places.

Definition 6.1.20 (Place). A place is a spatial entity that is non-human.

Localization relations provide a means to relate agents and artifacts to spatial
entities, such as the locatedAt relation in Figure 6.1.

Definition 6.1.21 (Localization relation). A localization relation is a relation that
can be established from an agent or an artifact to a spatial entity to denote that the
location of the subject of the relation can be determined with respect to the spatial
characteristics of the object of the relation.

It is worth to note that the spatial dimension of an STN can be reflected in the
digital space by its digital dimension via digital counterparts of spatial entities.

6.1.5 The digital dimension

The digital dimension is represented explicitly in an STN by means of digital artifacts
hosted by platforms. All the information in an STN has to be reified in the digital
space via digital artifacts if machines are to access and use it.

For illustrative purposes, Figure 6.2 depicts a digital dimension for the STN
representing the David’s household (cf. Figure 6.1). We refer to this illustration
throughout the rest of this section.

6.1.5.1 Reifying STNs in the digital space

Digital artifacts are artifacts that exist in the digital space. As depicted in Fig-
ure 6.2, digital artifacts can be the digital counterparts of abstract entities (e.g., The
Doe Group that represents The Doe Family), physical entities (e.g., Does’ Digital
House that represents Does’ House), or they can exist independently in the digital
space, such as a digital message (see Definition 6.1.28) sent by David to Sophia. It
is worth to note that an entity can be represented by multiple digital artifacts in
various STNs. For instance, David and Sophia can hold user accounts (see Defini-
tion 6.1.26) on multiple platforms.

Definition 6.1.22 (Digital Artifact). A digital artifact is an artifact that exists in
the digital space.

82 Chapter 6. A Model for Socio-technical Networks

Figure 6.2: An illustration of the digital dimension for Does’ home STN. David and
Sophia participate in the digital dimension via user accounts. Other digital artifacts
represent digital counterparts of entities from other dimensions (cf. Figure 6.1). All
the digital artifacts in this STN are hosted on the Does’ STN Box.

Platforms provide features to create and manage digital artifacts. Platforms
can run, for instance, in the cloud [Armbrust 2010], or on devices close to the edge
of the network. The latter is a paradigm referred to as fog computing [Bonomi 2012,
Vaquero 2014] and provides several benefits in the context of the IoT, such as re-
duced latency or enabling users to have greater control over their data. For instance,
all the digital artifacts depicted in Figure 6.2 are hosted by the Does’ STN Box,
which is a WoT home hub.

Definition 6.1.23 (Platform). A platform is an entity that represents a collection
of features that agents can use to create and manage digital artifacts.

It is worth to note that, if platforms are to be heterogeneous, clients (e.g.,
browsers, software agents, multi-agent middleware) must be able to dynamically ob-
tain information about the operations (see Definition 6.1.11) supported by a given
platform and how they can be implemented via the platform’s API. We discuss this
further in Chapter 7.

Hosting relations are used to relate digital artifacts to their hosting platforms,

6.1. Modeling Dimensions 83

such as the hostedBy relations in Figure 6.2. A digital artifact is hosted by a single
platform, however, the digital artifacts in an STN can be distributed across multiple
platforms. Hosting relations play an important role in achieving uniform interfaces
in the SWoT by making platforms discoverable. We discuss this further in Chapter 7.

Definition 6.1.24 (Hosting relation). A hosting relation is a relation that can be
established between a digital artifact and a platform to denote that digital artifact
is hosted by the platform.

Having introduced the basic entities required to construct the digital dimension
of an STN, we define an STN that has a digital dimension as a digital STN.

Definition 6.1.25 (Digital socio-technical network). A digital socio-technical net-
work is a socio-technical network that is reified in the digital space by means of
digital artifacts that are hosted by platforms.

It is worth to emphasize that a digital STN can be distributed across multiple
heterogeneous platforms. Agents can access and use heterogeneous platforms via
artifact-oriented interfaces (see Section 5.3.1) composed of domain-specific sets of
digital artifacts.

6.1.5.2 Social artifacts

In Section 5.3.2, we introduced several types of social artifacts, namely user accounts,
digital groups, digital messages, digital places and SWoT profiles. We define the first
four in this chapter, and discuss the latter in Chapter 7.

User accounts are digital counterparts of agents. An agent typically performs
operations within the context of a platform via a user account, and it is assumed
that the entity acting via the user account has been delegated by and acting for the
account’s holder. David and Sophia, for instance, hold user accounts on their STN
Box, which they can use to perform various operations, such as sending messages
(cf. Figure 6.2).

Definition 6.1.26 (User Account). A user account is a digital artifact that repre-
sents the digital counterpart of an agent.

It is worth to note that social relations in a digital STN can be established
between agents or user accounts they hold. For instance, in FOAF [Brickley 2014]
relations are established between agents, and on Twitter1 relations are created be-
tween user accounts. An agent can hold multiple user accounts, for instance, in
various domain-specific STNs and publish domain-specific data to each of them, in
which case it is useful for another agent to keep track only of the individual user
accounts that are of interest.

Remark 6.1.1. Social relations in a digital STN can be established between agents
or digital artifacts that represent them.

1http://www.twitter.com/

84 Chapter 6. A Model for Socio-technical Networks

Digital groups are digital counterparts of groups. Digital groups, however,
may provide a limited model of the represented group. For instance, in Figure 6.2,
The Doe Group does not represent the various roles enacted by members of The Doe
Family. It is also worth to note that David Doe and Sophia Doe are members of
The Doe Group via their user accounts. Therefore, The Doe Group may not be an
accurate representation of The Doe Family if, for instance, David and Sophia have
children that are not registered on the Does’ STN Box. Furthermore, digital groups
can be digital counterparts of groups that are not represented explicitly in the STG.
This could be the case, for instance, for a group that is created as an ad-hoc digital
group in an online social network.

Definition 6.1.27 (Digital Group). A digital group is a digital artifact that repre-
sents the digital counterpart of a group.

Digital messages are the digital counterparts ofmessages (see Definition 6.1.16)
reified and disseminated in the digital space. For instance, a spoken message in the
physical world can be reified and disseminated in various forms in the digital space,
such as via an audio recording or reproduced as text. Digital messages can be at-
tached to artifacts, such as a reply to a previous digital message or a “comment”
on a digital artifact. Digital messages are typically transmitted via a user account,
and the recipients can be agents, user accounts or groups. For instance, the STG
in Figure 6.2 represents a message transmitted by David to Sophia via their user
accounts.

Definition 6.1.28 (Digital Message). A digital message is a digital artifact that
represents a piece of information an agent can disseminate to a set of agents, user
accounts and/or digital groups.

It is worth to note that a digital message can be transmitted or shared in the
digital space. In the former case, a copy of the original message is sent to the
recipients (e.g., a direct message sent via Facebook), while in the latter the digital
message is only made available to the recipients, possibly for a limited period of
time (e.g., a direct message sent via Twitter). That is to say, the creator of a shared
digital message retains the control over its lifecycle, and for instance may delete the
digital message or modify its sharing settings at any time.

Digital places are digital counterparts of places in the physical world. For
instance, in Figure 6.2 the Does’ Digital House represents Does’ House. Similar
to digital groups, the actual place may or may not be represented explicitly in the
STG.

Definition 6.1.29 (Digital Place). A digital place is a digital artifact that represents
a place in the physical world.

We provide formal definitions for the social artifacts introduced in this section
in Section 6.3.

6.2. Formal Definitions 85

6.2 Formal Definitions

In the previous section, we introduced entities that can be part of an STN and we
organized them in multiple dimensions. We now formalize our discussion. Per the
generality principle (see Section 5.2.2.1), in this section we provide a mathematical
model that can be used to describe STNs at a high level of abstraction. To this
purpose, we formalize the primary definitions introduced in Section 6.1.1 and the
social relations introduced in Section 6.1.2. The mathematical model introduced
in this section can be further specialized to model more specific types of STNs.
In Section 6.3, for instance, we extend our definitions to model digital STNs (see
Definition 6.1.25).

In what follows, we structure our discussion in a top-down manner: we first
introduce a formal definition for STNs, and then we further discuss and define each
element of this definition. Throughout the rest of this section, we use and expand
on our previous example illustrated in Figure 6.1.

6.2.1 Structure

We use E to denote the set of entities (see Definition 6.1.1) in the SWoT. We use
AG ⊂ E to denote the set of agents (see Definition 6.1.6), ET ⊂ E to denote the set
of entity types (see Definition 6.1.4), and RT ⊂ E to denote the set of relation types
(see Definition 6.1.3), where AG, ET , and RT are mutually disjoint.

We have informally defined an STN as a dynamic and regulated system of agents
and other entities interrelated in a meaningful manner via relations (cf. Defini-
tion 6.1.9).

Definition 6.2.1 (Socio-technical network). Let S denote the set of STNs. An
STN s ∈ S is a structure that includes:

• Gt : the STG of s, that is the state of s at any given point in time t (see
Definition 6.1.10);
• Ops: the set of operations (see Definition 6.1.11) supported by s;
• Norms: the set of norms (see Definition 6.1.17) that regulate the use of oper-
ations in Ops;
• O : an ontology expressed in a given knowledge representation language L that

encapsulates domain-specific knowledge for s.

Per the generality principle (see Section 5.2.2.1), we do not impose unnecessary
restrictions on the knowledge representation language used by the ontology of an
STN. For instance, an STN can use a description logic ontology or a first-order
predicate logic ontology. However, we apply constraints on the knowledge that
is encapsulated in the ontology. For instance, we say that the ontology of an STN
defines the entity types (see Definition 6.1.4) and relation types (see Definition 6.1.3)
used within the STN.

Definition 6.2.2 (Entity and relation types). The signature of the ontology of an
STN s ∈ S defines two sets of non-logical symbols: ETypes ⊆ ET , which denotes

86 Chapter 6. A Model for Socio-technical Networks

the entity types that can be assigned to entities in s, and RTypes ⊆ RT , which
denotes the relation types that can be assigned to relations among entities in s.

The minimal vocabulary of an STN defines an entity type for agents, a relation
type that denotes typing relations (see Definition 6.1.5), and a relation type that
denotes social relations (see Definition 6.1.13). Throughout the rest of this chapter,
symbols for entity types are written in “camel case” and always begin with a capital
letter.

Definition 6.2.3. For all s ∈ S, we define symbols Agent ∈ ETypes and {type,
connectedTo} ⊂ RTypes, where ‘type’ denotes typing relations that associate en-
tity types from ETypes to entities in s, and ‘connectedTo’ denotes social relations
established between two agents.

We can now formally define the STG of an STN as follows:

Definition 6.2.4 (Socio-technical graph). The STG Gt of a given STN s ∈ S is a
directed edge-labeled multigraph given by:

Gt = (N ,E , sE , tE , lE), (6.1)

where:

• N ⊂ E is a set of nodes that represent interrelated entities in s at time t ;
• E ⊂ E is a set of directed edges that represent relations in s at time t ;
• sE : E → N is a function that maps an edge in E to a node in N that denotes

the source of a relation in s at time t ;
• tE : E → N is a function that maps an edge in E to a node in N that denotes

the target of a relation in s at time t ;
• lE : E → RTypes is a labeling function that maps an edge in E to a relation
type in RTypes that denotes the type of a relation in s at time t .

Notation 6.2.1. For clarity, henceforth we denote the directed labeled edges in the
STG of an STN s ∈ S at time t as triples of the form (subject , relation type, object) ∈
N × RTypes ×N .

For example, in our illustration in Figure 6.1, David and Sophia are agents
and spouses. We define an STN s1 ∈ S and choose an ontology Os1 such that it
defines the entity type Agent and three relation types, namely type, connectedTo,
and spouseOf . Given two individuals, DavidDoe and SophiaDoe, Listing 6.1 shows
the STG obtained using these definitions.

ETypess1 = {Agent}
RTypess1 = {type, connectedTo, spouseOf }
Gt,s1 = ({SophiaDoe,DavidDoe,Agent},

{(SophiaDoe, type,Agent), (DavidDoe, type,Agent),

(DavidDoe, spouseOf ,SophiaDoe), (SophiaDoe, spouseOf ,DavidDoe)})

Listing 6.1: A partial formalization of Does’ home STG in Figure 6.1.

6.2. Formal Definitions 87

The above example also motivates the need for autonomous reasoning in STNs.
Agents, for instance, should be able to autonomously infer from knowledge encapsu-
lated by Os1 that if David and Sophia are spouses, then there exist social relations
between them. That is to say, a spouseOf relation implies a connectedTo relation.
Agents would then be able to reliably interpret the STG in Listing 6.1 without
hard-coding processing logic specific to spouseOf relations.

6.2.2 Inferences

Agents can infer knowledge in an STN based on the STN’s ontology and STG (see
Definition 6.2.1). We express this formally as follows:

Definition 6.2.5. Given s ∈ S, we write O ∪Gt �L (a, rel , b), where a, b ∈ N and
rel ∈ RTypes, to say that we use knowledge encapsulated in O and Gt to infer that
(a, rel , b) holds in s.

We expand on our previous example and say that we choose Os1 to be a de-
scription logic ontology, such as an OWL ontology, that defines spouseOf to be
symmetric and spouseOf v connectedTo. From Os1 and the STG in Listing 6.1 it
can thus be inferred that:

Os1 ∪Gt,s1 �DL (SophiaDoe, connectedTo,DaveDoe)

Os1 ∪Gt,s1 �DL (DaveDoe, connectedTo,SophiaDoe)

Listing 6.2: Knowledge inferred from Os1 and the STG in Listing 6.1.

We introduce two notations that we use throughout the rest of this chapter,
namely for entities of a given entity type and relations of a given relation type.

Notation 6.2.2. We denote the restriction of N to all nodes of a given type T ∈
ETypes by N [T] = {n ∈ N | O ∪Gt �L (n, type,T)}.

Notation 6.2.3. We denote the restriction of all edges of a given type rel ∈ RTypes

by Rrel = {(a, b) ∈ N × (N ∪ ETypes) | O ∪Gt �L (a, rel , b)}.

For instance, from Listing 6.1 and Listing 6.2, we use these notations to write:

Ns1 [Agent] = {SophiaDoe,DavidDoe}
RconnectedTo,s1 = {(SophiaDoe,DavidDoe), (DavidDoe,SophiaDoe)}
Rtype,s1 = {(SophiaDoe,Person), (SophiaDoe,Agent), (DavidDoe,Person), (DavidDoe,Agent)}

6.2.3 Dynamics

Agents can modify the state of an STN, that is to say its STG, by means of operations
(see Definition 6.1.11). An operation is performed by a single agent within the scope
of an STN. The operation is applied to the STG of the STN and it can have a set
of input parameters. The operation may modify the STG, in which case it defines a
transition from one state of the STN to another. In addition, the operation can also
have a set of output parameters, for instance, to return the result of the operation.

88 Chapter 6. A Model for Socio-technical Networks

Notation 6.2.4. We use G to denote the set of all possible STGs.

Definition 6.2.6 (Operation). An operation op ∈ Ops within the scope of a given
STN s ∈ S is a function of the form:

op : G × AG × 2Input → G × 2Output , (6.2)

where Input and Output are technical notations for the sets of all possible input and
output parameters of an operation.

For example, David acquires a social wristband, which we interpret as an atomic
activity performed by David. The operation of acquiring a social thing can be
applied to the STG Gt1,s1 in Listing 6.1 with one input parameter, such as the
entity that represents the acquired social wristband, and result in an STG Gt2,s1 in
which the social thing is owned by David.

6.2.4 Norms

Norms (see Definition 6.1.17) in an STN can be used to regulate the autonomous be-
havior of agents via deontic statements (i.e., obligations, permissions, prohibitions).
Research in multi-agent systems proposes several models that can be used to define
and formalize norms (see Section 4.3). Extracting the commonality from the vari-
ous existing models to the aim of providing general, formal definitions for normative
concepts is a large undertaking that we leave as future work. This, however, does
not influence our contributions or the clarity of the rest of this dissertation.

In addition to regulating the behavior of agents, and in accordance with our
formal model, we consider that norms can also be used to regiment the output
of operations in digital STNs (see Definition 6.1.25). We discuss digital STNs in
Section 6.3. Per Definition 6.2.6, regimenting the output of an operation in a digital
STN implies that norms can affect the set of output parameters returned by a
platform (see Definition 6.1.23). For instance, the Does can apply privacy policies
to their STN Box (see Section 6.1.5) such that it advertises the things they own
only to people to which the Does have social relations, that is connectedTo relations
(cf. Definition 6.2.2). In other words, two different people, for instance, can obtain
two different profiles of the Doe family within the Does’ home STN based on the
STG of the STN and applicable privacy policies.

6.3 Digital Socio-technical Networks

The general mathematical model for STNs introduced in the previous section can
be further extended and specialized to satisfy domain-specific requirements, for in-
stance, by defining new entity types, relations types, and operation types. In this
section, we extend and specialize our general STN model to define digital STNs
(see Definition 6.1.25) of persons and social things (see Definition 6.1.7). The dig-
ital STN model we introduce in this section formalizes all the entities discussed in
Section 6.1.

6.3. Digital Socio-technical Networks 89

6.3.1 Entity and relation types

A digital STN is reified in the digital space by means of digital artifacts (see
Definition 6.1.22) that are hosted (see Definition 6.1.24) by platforms (see Defini-
tion 6.1.23). Digital artifacts may represent entities, such as persons or social things
(see Definition 6.1.7). Persons can own social things. We formalize this discussion
in what follows.

Definition 6.3.1 (Digital socio-technical network). Let DS ⊂ S be the set of digital
STNs. Given an STN s ∈ S, then s ∈ DS if and only if {Entity ,Person,SocialThing ,
DigitalArtifact ,Platform} ⊂ ETypes, {represents, hostedBy , owns} ⊂ RTypes, and
it can be entailed from the ontology of s that:

• N [Agent],N [DigitalArtifact], N [Platform] are mutually disjoint subsets of
N [Entity];
• N [Person] ∪ N [SocialThing] ⊂ N [Agent], and N [Person] ∩ N [SocialThing] =

∅.

Notation 6.3.1. We use DA ⊂ E to denote the set of digital artifacts, and P ⊂ E
to denote the set of platforms.

Definition 6.3.2 (Representation relation). Given s ∈ DS, d ∈ DA and e ∈ E ,
Rrepresents is a partial function Rrepresents : N [DigitalArtifact] 7→ N [Entity] and we
say that ‘d represents e’ if and only if (d , e) ∈ Rrepresents .

The binary relation Rrepresents is defined as a partial function, which implies
that digital artifacts may exist independently in the digital space, without being
the digital counterpart of a physical or abstract entity (cf. Definition 6.1.22). We
formalize the hostedBy ∈ RTypes relation in a similar manner.

Definition 6.3.3 (Hosting relation). Given s ∈ DS, d ∈ DA and p ∈ P, RhostedBy

is a function RhostedBy : N [DigitalArtifact] → N [Platform] and we say that ‘d is
hosted by p’ if and only if (d , p) ∈ RhostedBy .

The fourth type of relation introduced in Definition 6.3.1 (Digital STN), owns ∈
RTypes, represents a directed ownership relation from an entity, such as an agent
or a group of agents, to a social thing.

Definition 6.3.4 (Ownership relation). Given s ∈ DS, Rowns is a binary rela-
tion Rowns ⊆ N × N [SocialThing] such that O �L (n,m) ∈ Rowns ⇒ (n,m) ∈
RconnectedTo , and we say that an entity e ∈ N ‘owns’ a social thing t ∈ N [SocialThing]

if and only if (e, t) ∈ Rowns .

6.3.2 Operation types

In a digital STN, operations are typically performed via interfaces provided by plat-
forms, and they typically depend on the various digital artifacts available within
the STN. Per the generality principle (see Section 5.2.2.1), our aim is to support

90 Chapter 6. A Model for Socio-technical Networks

platform heterogeneity and thus avoid the over-specification of operations via un-
necessary restrictions.

The general form of an operation is given by Definition 6.2.6 in Section 6.2.3:
all operations are performed by an agent, they are applied to an STG, they may
have input and output parameters, and they may have side effects on the STG. We
specialize this general form of an operation to define operation types (see Defini-
tion 6.1.12) via adding constraints, such as required input parameters, expected
output parameters, or side effects an operation of a given operation type must have
on the STG on which it is applied. The various constituents we use to define op-
eration types are presented in Table 6.1. Henceforth, we also use a special notation
to refer to an agent performing an operation:

Notation 6.3.2. Henceforth, we use ap to denote an agent performing an operation.

Consitutent Description
Desc A natural language description of a class of operations.
Input Required input parameters. Implementers may define additional

required or optional input parameters.
Preconds A set of conditions that must hold for applying this type of oper-

ation.
Postconds A set of conditions that must hold if the operation is completed

successfully.
Output Suggested output of a successful operation.

Table 6.1: Constituents used to define classes of operations.

The suggested output of the operation types we define for digital STNs is gen-
erally a subgraph of the STG on which the operation is performed that represents
a description of a digital artifact within the STN. The returned description may be
specific to the platform that is hosting the digital artifact and may be affected by
norms, such as privacy policies (see Section 6.2.4).

Definition 6.3.5. The description of a digital artifact d ∈ N [DigitalArtifact] in a
digital STN s ∈ DS, denoted descs , returns a set of edges in which d is either the
source or the target:

descs : N [DigitalArtifact]→ 2E , descs(d) = {(a, rel , b) ∈ E | a = d ∨ b = d}.

In what follows, we define two fundamental operation types for creating and delet-
ing social relations (see Definition 6.1.13), that is relations to other agents. Social
relations can exist between agents or their digital counterparts (see Remark 6.1.1).

We define an operation type for creating an outgoing relation from a performing
agent ap to a given target as follows:

CreateRelationTo :

6.3. Digital Socio-technical Networks 91

1 . Desc : Agent ap performs t h i s opera t i on to c r e a t e a r e l a t i o n from
i t s e l f (or a d i g i t a l a r t i f a c t that r ep r e s en t s i t) to a ta rge t ed
en t i t y u , where u i s an agent or a d i g i t a l a r t i f a c t that r ep r e s en t s
an agent .

2 . Input : p ∈ P, u ∈ AG∗S .
3 . Preconds : u ∈ N ∨ ∃ u ′ ∈ N s . t . u ′ ∈ {ap}∗s .
4 . Postconds : u ∈ N ∧ ∃ u ′ ∈ {ap}∗s s.t. u ′ ∈ N ∧ (u ′, u) ∈ RconnectedTo .
5 . Output : descs(u) .

The performing agent ap is the implicit source of the intended relation, while
the target, a required input parameter, is either an agent or a digital artifact that
represents an agent. The precondition requires that either the source or the target
of the intended relation must already be part of the STN in which the operation
is performed. This precondition implies that agents within a given STN s can add
relations to targets on other STNs, or that agents outside of s can add relations to
targets within s, thus enabling linking across STNs. The postcondition specifies that
successfully completing this type of operation implies the resulting STG contains
a connectedTo edge between the source and the target, and both the source and
the target have been added to the set of nodes (if the case). The suggested output
of a CreateRelationTo operation is a description of the target. Implementers may
choose to further specialize this type of operation within their STNs, for instance
by requesting that both the source and the target of the relation are already part
of the STN.

We define an operation type for deleting an outgoing relation from a performing
agent ap to a given target in a similar fashion:

DeleteRelationTo :
1 . Desc : Agent ap performs t h i s opera t i on to d e l e t e a r e l a t i o n from

i t s e l f (or a d i g i t a l a r t i f a c t that r ep r e s en t s i t) to a ta rge t ed
en t i t y u , where u i s an agent or a d i g i t a l a r t i f a c t that r ep r e s en t s
an agent .

2 . Input : p ∈ P, u ∈ AG∗S .
3 . Preconds : ∃ u ′ ∈ {ap}∗s s . t . (u ′, u) ∈ RconnectedTo .
4 . Postconds : @u ′ ∈ {ap}∗s s . t . (u ′, u) ∈ RconnectedTo .
5 . Output : descs(u) .

In the above specification, the precondition for deleting a social relation is that
the relation exists, and the postcondition is that the social relation has been deleted.
The suggested output of this type of operations returns a description of the target.

Agents can crawl STNs via social relations. We define an operation type for
retrieving the outgoing social relations of a targeted agent or user account as follows:

GetOutgoingRelations :
1 . Desc : Agent ap performs t h i s opera t i on to r e t r i e v e the outgoing

s o c i a l r e l a t i o n s o f a ta rge t ed en t i t y u , where u i s an agent or a
user account .

2 . Input : p ∈ P, u ∈ AG∗S .
3 . Preconds : (u, p) ∈ RhostedBy ∨ ∃ u ′ ∈ {u}∗s s . t . (u ′, p) ∈ RhostedBy .
4 . Postconds : None .
5 . Output : {c ∈ N [UserAccount] | (u, c) ∈ RconnectedTo ∨ (u ′, c) ∈ RconnectedTo} .

92 Chapter 6. A Model for Socio-technical Networks

The precondition for retrieving the outgoing social relations of a targeted agent
is that there is a digital artifact that represents the agent and is hosted by platform
p serving the request. This operation type does not impact the STN, therefore
there are no preconditions. If the operation is successful, it should return a graph
containing the descriptions of the entities to which the targeted agent has outgoing
social relations. In Chapter 8, we present how this operation type is implemented
by various existing social platforms, such as Facebook and Twitter.

Operation types for creating, retrieving, and deleting incoming social relations
can be defined similarly.

6.3.3 Social artifacts

In this section, we provide formal definitions for the social artifacts introduced in
our discussion of the digital dimension of an STN (see Section 6.1.5.2). For each
social artifact, we define artifact-specific entity types, relation types, and operation
types. It is worth to note that our model can be easily extended further with other
types of artifacts in a similar manner.

6.3.3.1 User accounts

User accounts are held by agents and represent their digital counterparts in the
SWoT (see Definition 6.1.26). We define the entity types, relation types, and opera-
tion types for representing and using user accounts in what follows.

Definition 6.3.6 (Entity and relation types for user accounts). In a digital STN s ∈
DS that supports user accounts, the ontology of s defines UserAccount ∈ ETypes

and heldBy ∈ RTypes such that it can be entailed that:

• any node that is a user account is also a digital artifact :
∀n ∈ E ,n ∈ N [UserAccount]⇒ n ∈ N [DigitalArtifact];

• a user account is held by a single agent and it represents the agent :
RheldBy : N [UserAccount]→ N [Agent],
∀ s ∈ S,O �L (u, a) ∈ RheldBy ⇒ (u, a) ∈ Rrepresents .

Definition 6.3.7 (Operation types for user accounts). In a digital STN s ∈ DS that
supports user accounts, the set of operations of s may include the following operation
types: {GetUserAccount ,WhoIsAgent ,CreateUserAccount ,UpdateUserAccount ,

PatchUserAccount ,DeleteUserAccount} ⊂ Ops.

An operation of the GetUserAccount operation type is used to retrieve a descrip-
tion of a user account from an STN hosted on a given platform. This operation type
requires two input parameters: the platform on which the operation is to be per-
formed and the user account to be retrieved. The agent ap performing the operation
is implicit (see Notation 6.3.2). The precondition for an operation of this type to
be completed successfully is that the user account is indeed hosted by the platform.
This operation type has no side effects on the state of the STN. If an operation of

6.3. Digital Socio-technical Networks 93

this type is successful, the suggested output for this operation type is the description
(see Definition 6.3.5) of the requested user account.

GetUserAccount :
1 . Desc : Agent ap r e t r i e v e s the d e s c r i p t i o n o f a user account on

plat form p .
2 . Input : p ∈ P, u ∈ N [UserAccount] .
3 . Preconds : (u, p) ∈ RhostedBy .
4 . Postconds : None .
5 . Output : descs(u) .

An operation of the WhoIsAgent operation type is used to retrieve the user
accounts that are held by an agent within an STN an hosted by a given platform.
This operation type requires two input parameters, namely the platform and the
targeted agent, and has no preconditions or postconditions. The suggested output
for this operation type is a set of user accounts held by the targeted agent and hosted
by the given platform.

WhoIsAgent :
1 . Desc : Agent ap r e t r i e v e s the user accounts o f an agent a that are

hosted on plat form p .
2 . Input : p ∈ P, a ∈ N [Agent] .
3 . Preconds : None .
4 . Postconds : None .
5 . Output : {u ∈ N [UserAccount] | (u, a) ∈ RheldBy} .

An operation of the CreateUserAccount operation type is used to create a user
account on a given platform. This operation type requires one input parameter, the
platform on which the user account is to be created, and it has the precondition
that a unique digital artifact, that is to say a digital artifact not already in use,
can be “chosen” (i.e., created). If an operation of this operation type is completed
successfully, a new UserAccount artifact is created, and it is held by the agent
performing the operation (i.e., ap) and hosted by platform on which the operation is
performed. The suggested output is the description of the created user account. It
is worth to emphasize that it is possible for implementers to further specialize this
operation type, for instance, to require additional input parameters, such as a name
to be displayed within the STN for the created user account.

CreateUserAccount :
1 . Desc : Agent ap c r e a t e s a user account on plat form p .
2 . Input : p ∈ P .
3 . Preconds : ∃ d ∈ DA s.t. d 6∈ N [DigitalArtifact] .
4 . Postconds : d ∈ N [UserAccount] ∧ (d , ap) ∈ RheldBy ∧ (d , p) ∈ RhostedBy .
5 . Output : descs(d) .

We define two operation types for updating descriptions of user accounts, namely
UpdateUserAccount and PatchUserAccount . The former is used to replace the en-
tire description of a user account with the one provided as an input parameter. The
latter is used to delete and add sets of edges to the description of a user account. It
is worth to note that we have chosen to define these two operation types to resemble

94 Chapter 6. A Model for Socio-technical Networks

the semantics of the HTTP PUT [Fielding 2014c] and PATCH [Dusseault 2010] meth-
ods, which ensures a more transparent mapping of these operation types to both
HTTP and CoAP (see Section 2.4 for details on the Web of Things and enabling
technologies). Implementers, however, have the possibility to extend our digital STN
model with additional operation types.

UpdateUserAccount

1 . Desc : Agent ap updates the d e s c r i p t i o n o f a user account hosted on
plat form p .

2 . Input : p ∈ P, u ∈ N [UserAccount],D ⊂ E × RTypes × E .
3 . Preconds : (u, ap) ∈ RheldBy ∧ (u, p) ∈ RhostedBy .
4 . Postconds : descs(u) = D .
5 . Output : descs(u) .

PatchUserAccount

1 . Desc : Agent ap patches the d e s c r i p t i o n o f a user account hosted on
plat form p .

2 . Input : p ∈ P, u ∈ N [UserAccount],D1 ⊂ E ,D2 ⊂ E × RTypes × E .
3 . Preconds : (u, ap) ∈ RheldBy ∧ (u, p) ∈ RhostedBy .
4 . Postconds : E = (E \D1) ∪D2 .
5 . Output : descs(u) .

An operation of the DeleteUserAccount operation type is used to remove a user
account and its associated description, which are hosted by a given platform, from
an STN.

DeleteUserAccount :
1 . Desc : Agent ap d e l e t e s a user account on plat form p .
2 . Input : p ∈ P, u ∈ N [UserAccount] .
3 . Preconds : (u, ap) ∈ RheldBy ∧ (u, p) ∈ RhostedBy .
4 . Postconds : u 6∈ N ∧ E = E descs(u) .
5 . Output : descs(u) .

6.3.3.2 Digital Groups

Digital groups (see Definition 6.1.27) are digital counterparts of groups (see Defini-
tion 6.1.14).

Definition 6.3.8 (Entity and relation types for digital groups). In a digital STN s ∈
DS that supports digital groups, the ontology of s defines {Group,DigitalGroup} ⊆
ETypes and memberOf ∈ RTypes such that it can be entailed that:

• any node that is a digital group is also a digital artifact :
∀n ∈ E ,n ∈ N [DigitalGroup]⇒ n ∈ N [DigitalArtifact];

• agents can be members of groups, and user accounts can be members of digital
groups:
RmemberOf ⊆ (N [Agent]×N [Group]) ∪ (N [UserAccount]×N [DigitalGroup]).

6.3. Digital Socio-technical Networks 95

Definition 6.3.9 (Operation types for digital groups). In a digital STN s ∈ DS
that supports digital groups, the set of operations of s may include the following
operation types: {GetDigitalGroup,CreateDigitalGroup, JoinDigitalGroup,

LeaveDigitalGroup,UpdateDigitalGroup,PatchDigitalGroup,DeleteDigitalGroup} ⊂
Ops.

An operation of the JoinDigitalGroup operation type is performed by an agent
to join a digital group. This operation type requires two input parameters, namely
the platform on which it is performed and the targeted digital group, and has no
preconditions. If the operation is successful, a memberOf relation whose source is
the performing agent and whose the target is the digital group is added to the STG
of the STN.

JoinDigitalGroup :
1 . Desc : Agent ap j o i n s a group g on plat form p .
2 . Input : p ∈ P, g ∈ N [DigitalGroup] .
3 . Preconds : None .
4 . Postconds : (ap , g) ∈ RmemberOf .
5 . Output : descs(g) .

Other operation types can be defined in a similar manner.

6.3.3.3 Digital Messages

Digital messages (see Definition 6.1.28) are digital counterparts of messages (see
Definition 6.1.16).

Definition 6.3.10 (Entity and relation types for digital messages). In a digital STN
s ∈ DS that supports digital messages, the ontology of s defines {Message,

DigitalMessage} ⊆ ETypes and {hasSender , hasReceiver , replyTo, attachedTo} ⊆
RTypes such that it can be entailed that:

• any node that is a digital message is also a digital artifact :
∀n ∈ E ,n ∈ N [DigitalMessage]⇒ n ∈ N [DigitalArtifact];

• a digital message has one sender, which is a user account, and one or more
receivers, which may be user accounts or digital groups:
RhasSender : N [DigitalMessage]→ N [UserAccount],
RhasReceiver ⊆ N [DigitalMessage]× (N [UserAccount] ∪N [DigitalGroup]);

• a message can be sent in reply to other messages, and it can be attached to
digital artifacts:
RreplyTo ⊆ N [DigitalMessage]×N [DigitalMessage],
RattachedTo ⊆ N [DigitalMessage]×N [DigitalArtifact].

Definition 6.3.11 (Operation types for digital messages). In a digital STN s ∈ DS
that supports digital messages, the set of operations of s may include the following
operation types: {GetSentDigitalMessages,GetReceivedDigitalMessages,

CreateDigitalMessage,DeleteDigitalMessage} ⊂ Ops.

96 Chapter 6. A Model for Socio-technical Networks

An operation of the CreateDigitalMessage operation type is performed by an
agent to create a digital message. This operation type requires as input parameter
the platform on which the digital message is to be created and a set of recipients.
The precondition is that a unique digital artifact can be “chosen” to create the digital
message. The digital message is added to the STG of the STN and appropriate edges
are added for the sender and each of the recipients. The suggested output is the
description of the created digital message.

SendMessage :
2 1 . Desc : Agent ap sends a message to a s e t o f r e c i p i e n t s

Recipients ⊆ N [UserAccount] ∪N [DigitalGroup] .
2 . Input : p ∈ P .

4 3 . Preconds : ∃ d ∈ DA s.t. d 6∈ N [DigitalArtifact] .
4 . Postconds : d ∈ N [DigitalMessage] ∧ (d , p) ∈ RhostedBy ∧ (d , ap) ∈ RhasSender ∧

6 ∀ r ∈ Recipients, (d , r) ∈ RhasReceiver .
5 . Output : descs(d) .

Other operation types can be defined in a similar manner.

6.3.3.4 Digital Places

Digital places (see Definition 6.1.29) are digital counterparts of places (see Defini-
tion 6.1.20).

Definition 6.3.12. Given s ∈ DS, we define {Place,DigitalPlace} ⊆ ETypes

and {id ,name, description, locatedAt} ⊆ RTypes, where RlocatedAt ⊆ N [Entity] ×
N [Place].

Definition 6.3.13 (Entity and relation types for digital places). In a digital STN
s ∈ DS that supports digital places, the ontology of s defines {Place,DigitalPlace} ⊆
ETypes and locatedAt ∈ RTypes such that it can be entailed that:

• any node that is a digital place is also a digital artifact :
∀n ∈ E ,n ∈ N [DigitalPlace]⇒ n ∈ N [DigitalArtifact];

• entities can be located at places: RlocatedAt ⊆ N [Entity]×N [Place].

Definition 6.3.14 (Operation types for digital places). In a digital STN s ∈ DS
that supports digital places, the set of operations of s may include the following op-
eration types: {GetDigitalPlace,CheckIntoDigitalPlace,CheckOutOfDigitalPlace,

CreateDigitalPlace,UpdateDigitalPlace,PatchDigitalPlace,DeleteDigitalPlace} ⊂ Ops.

An operation of the CheckIntoDigitalPlace operation type is performed by an
agent to declare its location at a given digital place. This operation type requires
two input parameters, namely the platform on which the operation is executed and
the targeted place, and it has no preconditions. If an operation of this operation
type is successful, a locatedAt relation, whose source is the performing agent and
target is the place, is added to the STG of the STN. The suggested output is the
description of the targeted place.

6.4. Summary 97

CheckIntoDigitalPlace :
1 . Desc : Agent ap checks in to a p lace .
2 . Input : p ∈ P , l ∈ N [DigitalPlace] .
3 . Preconds : None .
4 . Postconds : (ap , l) ∈ RlocatedAt .
5 . Output : descs(l) .

Other operation types can be defined in a similar manner.

6.4 Summary

In this chapter, we addressed Research Question 2, that is how to model networks
of people and autonomous things such that things can manipulate and reason upon
them. To this purpose, we introduced a mathematical model that defines STNs
by means of entities interrelated to one another in a meaningful manner. Per the
generality principle (see Section 5.2.2.1), our model is general such that it can
represent heterogeneous STNs and provide an unambiguous, formal foundation for
the SWoT. Per the separation of concerns principle (see Section 5.2.2.2), our model
is modular such that it can be easily extended, for instance, to represent domain-
specific STNs. Per the interoperability principle (see Section 5.2.2.3), all domain-
specific knowledge in our STN model (e.g., entity types, relation types, operation
types) is encapsulated in an easily standardizable form via an ontology.

In Section 6.1, we introduced and illustrated the entities in our model, and we or-
ganized them in multiple dimensions that we use to represent STNs. In Section 6.2,
we defined a general and extensible mathematical model for representing dynamic
and regulated networks of agents that are interrelated via social relations. In Sec-
tion 6.3, we extended this model to represent digital STNs, that is STNs reified in the
digital space by means of digital artifacts hosted by platforms. We provided formal
definitions for the social artifacts that we use to create artifact-oriented interfaces
for heterogeneous social and STN platforms (see Section 5.3.2 and Section 6.1.5 for
details). Implementers have the possibility to easily extend our general STN model
in Section 6.2, and our digital STN model in Section 6.3, in a similar manner to the
one presented in this chapter, that is by defining new entity types, relation types,
and operation types. Furthermore, in Chapter 7 we provide an OWL ontology that
encapsulates all the entities defined by our digital STN model. Implementers can
use and extend this ontology to describe heterogeneous STNs.

Chapter 7

A Hypermedia-driven Social Web
of Things

Contents
7.1 A Semantic Description Framework for STNs 100

7.1.1 STN ontology . 100
7.1.2 Agent descriptions . 104
7.1.3 Platform descriptions . 106
7.1.4 Digital artifact descriptions 108

7.2 Uniform Interfaces for STN Platforms 110
7.2.1 Uniformity constraints . 111
7.2.2 Control-driven interfaces . 115
7.2.3 Data-driven interfaces . 116
7.2.4 Mixed interfaces . 117

7.3 A Five-level Integration Strategy for STN Platforms 118
7.3.1 Level 1: Publish a platform description 118
7.3.2 Level 2: Enable social things as first-class citizens 119
7.3.3 Level 3: Produce STN-compliant representations 119
7.3.4 Level 4: Expose a uniform API 120
7.3.5 Level 5: Make the platform open 120

7.4 Summary . 121

In our vision for a Social Web of Things (SWoT), people and things are situated
and interact in a global environment. The environment is sustained by heterogeneous
platforms and its main roles include to facilitate discoverability and flexible inter-
action in the ecosystem (see Section 5.1.5). In this chapter, we apply the REST
architectural style (per Foundational Principle 1) and the digital STN model defined
in Section 6.3 to create a hypermedia-driven environment sustained by heterogeneous
STN platforms1. Hypermedia is central to achieve uniform interfaces2 and thus al-
leviate the heterogeneity problem in the SWoT, and the social network metaphor

1We call an STN platform any platform (see Definition 6.1.23) that interconnects and enables
interaction between people, things, or both. Relations among people and things may or may not
be represented explicitly in the form of a socio-technical graph (see Definition 6.1.10.

2See Section 2.1.1 for further details on the role of hypermedia and the HATEOAS constraint
in the REST architectural style.

100 Chapter 7. A Hypermedia-driven Social Web of Things

provides a mechanism to enhance connectivity in the ecosystem and across appli-
cation domain silos (see Foundational Principle 2). In a hypermedia-driven SWoT,
software clients are able to “learn” on-the-fly how to interface with STN platforms
in their environment, and can thus transcend platform boundaries to navigate and
manipulate the world-wide socio-technical graph (STG). To bring about such an
ecosystem, however, we have to address two questions: how to create hypermedia
APIs for STN platforms, and how to integrate STN platforms with non-hypermedia
APIs into a hypermedia-driven SWoT.

This chapter is structured as follows. In Section 7.1, we introduce a semantic
description framework for STN platforms that conforms to the digital STN model
defined in Section 6.3. We use this framework in Section 7.2 to address the above
questions and provide solutions to achieve uniform interfaces for heterogeneous STN
platforms. In Section 7.3, we structure our approach in a progressive, five-level
strategy for the development and integration of STN platforms into the SWoT.

7.1 A Semantic Description Framework for STNs

In this section, we present a framework for creating semantic descriptions of STNs
(see Definition 6.1.9), and in particular digital STNs (see Definition 6.1.25) and
their hosting platforms (see Definition 6.1.23). We first introduce an OWL ontol-
ogy [W3C OWL Working Group 2012], which we call the STN ontology, that follows
our formal definitions in Chapter 6. We then provide descriptions for agents (see
Definition 6.1.6), platforms, and digital artifacts (see Definition 6.1.22).

We have chosen OWL 2 [W3C OWL Working Group 2012] because it is a W3C
Recommendation (see interoperability principle in Section 5.2.2.3) and it is built on
top of RDF, which provides a data model that is suitable to represent distributed
graphs.

7.1.1 STN ontology

Per the separation of concerns principle (see Section 5.2.2.2), the concepts and
properties defined by the STN ontology are organized in three modules, as depicted
in Figure 7.1:

• STN-Core, which provides terms to describe socio-technical graphs (STGs)
(see Definition 6.1.10); this module is informally aligned with several ontolo-
gies, such as the FOAF vocabulary [Brickley 2014], the SIOC Core Ontol-
ogy [Bojars 2010], or the W3C Geospatial Vocabulary [Lieberman 2007] (cf.
Figure 7.1);

• STN-Operations, which extends STN-Core with terms to describe operations
(see Section 6.3.2) to be performed on STGs;

• STN-Operations-HTTP, which extends STN-Operations and the W3C HTTP
Vocabulary [Koch 2011] to provide terms to describe HTTP-based APIs.

7.1. A Semantic Description Framework for STNs 101

Figure 7.1: The STN ontology network.

This separation of concerns facilitates reusing and extending the STN ontology.
For instance, the STN-Operations-HTTP module may be substituted with other vo-
cabularies for describing HTTP-based APIs, or even with modules that describe im-
plementations of operations by means of other protocols, such as CoAP [Shelby 2014a].

Module Prefix Namespace URI
STN-Core stn: http://purl.org/stn/core#
STN-Operations stn-ops: http://purl.org/stn/operations#
STN-Operations-HTTP stn-http: http://purl.org/stn/operations/http#

Table 7.1: Namespace prefix bindings used throughout the rest of this dissertation
for the STN ontology.

We present an overview of each of the three modules in what follows. The com-
plete specifications are available online.3,4,5 Throughout the rest of this dissertation,
for clarity and conciseness, we use the namespace prefix bindings in Table 7.1.

7.1.1.1 STN-Core

STN-Core provides terms that correspond to the entities defined in Chapter 6,
except the ones related to the normative dimension (see Section 6.1.3), which we
do not represent in STGs at the moment (see Chapter 10).

Figure 7.2 depicts a simplified overview of STN-Core and the various dimensions
of an STN that can be described using this module, namely the social, digital, and

3http://purl.org/stn/core/spec
4http://purl.org/stn/operations/spec
5http://purl.org/stn/operations/http/spec

102 Chapter 7. A Hypermedia-driven Social Web of Things

Figure 7.2: A partial overview of STN-Core. For clarity, in this figure we omit the
prefixes of properties, that is the stn: prefix for the properties defined as part of
STN-Core and the rdfs: prefix for the rdfs:subClassOf property defined as part
of RDF Schema.

spatial dimensions (cf. dimensions defined in Section 6.1).
The social dimension (cf. Figure 7.2) includes two disjoint classes of agents (see

Definition 6.1.6), that is persons and social things (see Definition 6.1.7). Agents
can be interconnected to one another via social relations (see Definition 6.1.13),
which are defined as part of STN-Core via the stn:connectedTo property and can
be established either between agents themselves, or via their user accounts. Agents
can be members of groups (see Definition 6.1.14), and they can exchange messages
(see Definition 6.1.16) with other agents and groups of agents.

The spatial dimension (cf. Figure 7.2) includes the class of spatial entities (see
Definition 6.1.19), and its disjoint subclasses of persons and places (see Defini-
tion 6.1.20). STN-Core also defines the class of social things with spatial coordinates
(i.e., that are also places), which we refer to as social places.6

The digital dimension includes classes of digital artifacts (see Definition 6.1.22)
that represent the digital counterparts of entities defined by the other dimensions,
namely (cf. Figure 7.2): digital places (see Definition 6.1.29), user accounts (see
Definition 6.1.26), digital messages (see Definition 6.1.28), and digital groups (see
Definition 6.1.27). Digital artifacts are hosted by (see Definition 6.1.24) platforms
(see Definition 6.1.23).

We illustrate the use of these terms to create agent descriptions in Section 7.1.2
and digital artifact descriptions in Section 7.1.4.

6For clarity, we chose not to represent in Figure 7.2 the class of social places, which is denoted
by the URI stn:SocialPlace.

7.1. A Semantic Description Framework for STNs 103

7.1.1.2 STN-Operations

STN-Operations extends STN-Core with terms for describing operations (see Defini-
tion 6.1.11) supported by platforms (see Definition 6.1.23) and performed by agents,
as depicted in Figure 7.3.

Figure 7.3: A partial overview of STN-Operations. For clarity, we omit the prefixes
of the depicted properties.

We introduced the general form of an operation in Definition 6.2.6 in Section 6.2.
STN-Operations defines concepts and properties to describe the input and output pa-
rameters of operations. In particular, this module defines two classes of parameters,
that is for representations and key-value pairs (cf. Figure 7.3). The former denotes
serialized data objects, such as Turtle [Beckett 2008] representations of digital arti-
facts. The latter is further specialized via several subclasses, such as the class of user
account identifiers denoted by the stn-ops:UserAccountID URI7, which is used to
encapsulate the association between a platform-specific key and a platform-specific
identifier of a user account.

In Section 6.3.2, we defined several operation types (see Definition 6.1.12) for
digital STNs. STN-Operations defines concepts for each of these operation types
and classifies them as either queries, which are operations used to retrieve infor-
mation from STGs, or actions, which are operations used to manipulate STGs (cf.
Figure 7.3). For instance, operations of type GetUserAccount (see Section 6.3.3)
are queries used to retrieve representations of user accounts, whereas operations
of type CreateUserAccount (see Section 6.3.3) are actions used to create user ac-
counts. Agents can use this distinction to infer which operations are safe and which
operations impact STGs.

Operations can have one or more implementations (cf. Figure 7.3). The class of
implementations defined as part of STN-Operations is intended to be extended by
other vocabularies concerned with representing operation implementations, such as
STN-Operations-HTTP.

7For clarity, we chose not to represent in Figure 7.3 all the classes of operations or pa-
rameters defined as part of STN-Operations. The complete specification is available online:
http://purl.org/stn/operations/spec

104 Chapter 7. A Hypermedia-driven Social Web of Things

7.1.1.3 STN-Operations-HTTP

STN-Operations-HTTP extends STN-Operations with concepts and properties for
translating operations to HTTP requests and extracting RDF data from HTTP
responses. That is to say, this module can be used to describe HTTP-based imple-
mentations of operations supported by platforms.

This module imports the W3C HTTP vocabulary [Koch 2011] and defines the
class of STN requests as HTTP requests that are also implementations of operations
(cf. Figure 7.4). The class of STN requests is also further specialized to denote the
class of authenticated STN requests (cf. Figure 7.4), which denotes STN requests
that use HTTP authentication [Fielding 2014a].

Figure 7.4: A partial overview of STN-Operations-HTTP. For clarity, we omit the
prefixes of the depicted properties.

STN-Operations-HTTP defines a class for key value mappings that can be con-
tained within representations (cf. Figure 7.4), and several properties used to as-
sociate these mappings both to terms defined by STN-Core and platform-specific
information. For illustrative purposes, in Section 7.1.4 we show how to use these
terms to extract an RDF representation of a user account from a JSON representa-
tion of a Twitter account.

7.1.2 Agent descriptions

The terms defined by the STN ontology and any of its extensions can be used to
create agent descriptions, which we call SWoT profiles (see Section 5.3.2.2). SWoT
profiles are thus RDF graphs that are part of the world-wide STG (see Section 5.3.2).
A SWoT profile must contain at least one entity type (see Definition 6.1.4) for
the described agent (see Definition 6.1.6), which can be stn:Agent or any of its
subclasses. In addition, a SWoT profile can aggregate general information about
the described agent and its user accounts (see Definition 6.1.26) hosted by various
platforms (see Definition 6.1.23).

Definition 7.1.1. (SWoT profile) The SWoT profile of an agent is an RDF graph
that describes the agent and its user accounts in the SWoT.

7.1. A Semantic Description Framework for STNs 105

Per Foundational Principle 1 (conformity to REST), agents are uniquely identi-
fied in the SWoT, for instance via URIs. In order to support discoverability, deref-
erencing an agent’s identifier should retrieve a representation of its SWoT profile.

For illustrative purposes, in Listing 7.1 we present a SWoT profile for David
(see scenarios in Section 5.1). In this example, David Doe is identified by a hash
URI [Sauermann 2008] that dereferences to David’s user account (see Definition 6.1.26)
hosted by the Does’ STN Box, which is an STN platform. David’s user account also
encodes his SWoT profile, which could have been generated, for instance, when
David registered to the STN Box. It is worth to note, however, that the SWoT
profile of an agent is not necessarily associated to a user account. A SWoT pro-
file can exist, for instance, in a standalone document, similar to a FOAF profile
document [Brickley 2014].

<http : / / 1 9 2 . 1 6 8 . 0 . 1 / u s e r s /david . doe#DavidDoe>
a stn : Person ;

stn :name "David Doe" ;
stn : connectedTo <http : / / 1 92 . 1 6 8 . 0 . 1 / u s e r s / sophia . doe#SophiaDoe> ;
stn : ho lds <http : / / 1 9 2 . 1 6 8 . 0 . 1 / u s e r s /david . doe/> ;
stn : ho lds [

a stn : UserAccount ;
stn : hostedBy

<http ://www. tw i t t e r . com/ . wel l−known/ stn/#platform> ;
stn : id "daviddoe " ;

] ;
s tn : ho lds [

a stn : UserAccount ;
stn : hostedBy

<http ://www. facebook . com/ . wel l−known/ stn/#platform> ;
stn : id "1550387481863557" ;

] .

<http : / / 1 9 2 . 1 6 8 . 0 . 1 / u s e r s /david . doe>
a stn : UserAccount ;
stn : d e s c r i p t i o n "David Doe ’ s user account . "@en ;
stn : hostedBy <http : / / 1 9 2 . 1 6 8 . 0 . 1 / . wel l−known/ stn/#platform> ;
stn : heldBy <http : / / 1 92 . 1 6 8 . 0 . 1 / u s e r s /david . doe#DavidDoe> .

Listing 7.1: David Doe’s SWoT profile, which is hosted on the Does’ STN Box. David
holds user accounts on the STN Box, Twitter, and Facebook. David is identified
by a hash URI [Sauermann 2008] that dereferences to his user account on the STN
Box.

Per Listing 7.1, David’s SWoT profile describes him as an stn:Person named
David Doe, who has a social relation (see Definition 6.1.13) to another entity that is
also denoted by a hash URI. As the URI might hint to a human, it identifies Sophia
Doe, whose SWoT profile is also hosted on the Does’ STN Box. A software client
can obtain this information by dereferencing the URI to retrieve Sophia’s SWoT
profile, which can be defined similarly to the one of David.

David holds additional user accounts on Twitter and Facebook. Unlike the Does’
STN Box, Twitter and Facebook use platform-specific resource identifiers, which are

106 Chapter 7. A Hypermedia-driven Social Web of Things

represented via the stn:id property (cf. Listing 7.1).8

7.1.3 Platform descriptions

Similar to agent descriptions, a platform description is an RDF graph created using
terms defined by the STN ontology and any of its extensions that encodes informa-
tion about the features and API of the described platform (see Definition 6.1.23).
Platform descriptions are part of the world-wide STG (see Section 5.3.2). Machines
can use platform descriptions to “learn” on-the-fly how to interface with platforms.

Definition 7.1.2. (Platform description) A platform description is an RDF graph
that describes the features and API provided by a platform.

Similar to agent identifiers, a platform’s identifier is uniform and dereferencing
it should retrieve a representation of its complete or partial platform description.
We refer to the document retrieved when dereferencing the URI of an STN platform
as its STN description document.

For illustrative purposes, in Listing 7.2 we present a platform description for
the Does’ STN Box (see example in the previous section). From this descrip-
tion, a software client can extract the platform’s name to be displayed to a hu-
man user, the base URL of its API, supported authentication protocols (e.g., We-
bID [Sambra 2015b]), representation formats (e.g., Turtle [Beckett 2008]), and op-
erations (see Definition 6.1.11) implemented via its API.
@pref ix format : <http ://www.w3 . org /ns/ formats/> .

<#platform>
a stn : Platform ;
stn :name "Does ’ STN Box" ;
stn−http : baseURL "http : / / 1 92 . 1 6 8 . 0 . 1 / "^^xsd : anyURI ;
stn−http : supportsAuth stn−http :WebID ;
stn−ops : consumes format : Turt le ;
stn−ops : produces format : Turt le ;
stn−ops : supports <#createUserAccount> ,

<#getUserAccount> ,
(. . .)
<#deleteMessage> .

Listing 7.2: General platform description of an stn:STNPlatform that supports the
WebID authentication protocol, Turtle representations, and several operations to be
performed via its API.

It is worth to note that the interface of the Does’ STN Box is defined in terms
of operations. We discuss operation descriptions in Section 7.1.3.1. However, plat-
forms can also expose interfaces defined in terms of digital artifacts. We discuss
descriptions of digital artifact containers in Section 7.1.3.2. We discuss in further
detail the various types of interfaces exposed by STN platforms in Section 7.2.

8The URIs provided in this example to identify the Twitter and Facebook platforms are used
for illustrative purposes. The URIs should, in fact, point to descriptions of the two platforms (see
Section 7.1.3), such as the ones we introduce in Chapter 8.

7.1. A Semantic Description Framework for STNs 107

7.1.3.1 Operation descriptions

An operation description is created using terms defined by STN-Operations and/or
any of its extensions, and must include:

• the operation type (see Definition 6.1.12), which is stn-ops:Operation or any
of its subclasses;

• an implementation, which is specified via the stn-ops:implementedAs prop-
erty and is a member of stn-ops:Implementation or any of its subclasses;

• descriptions for each required input parameter, which are specified via the
stn-ops:hasRequiredInput property and are members of stn-ops:Parameter
or any of its subclasses.

In addition, an operation description may also include descriptions for optional
input parameters via the stn-ops:hasInput property, and one or multiple out-
put descriptions via the stn-ops:hasOutput property. The latter are necessary,
for instance, to extract representations of digital artifacts from heterogeneous data
sources, which we discuss in Section 7.1.4.

For illustrative purposes, in Listing 7.3 we present an operation description for
a CreateUserAccount operation (see formal definition in Section 6.3.3), which is
created using terms defined by STN-Operations and STN-Operations-HTTP. Soft-
ware clients can perform this operation via an HTTP POST to the /users/ endpoint.
The body of the request must include one required input parameter, a name to be
displayed within the STN for the created user account, which is a member of the
stn-ops:DisplayedName parameter class. Optionally, the body of the request may
also include a description to be displayed within the STN. The presented operation
description specifies an output description, which is a Turtle representation of a user
account.

<#createUserAccount>
a stn−ops : CreateUserAccount ;
stn−ops : implementedAs [

a stn−http : STNRequest ;
http :methodName "POST" ;
http : abso lutePath "/ us e r s /" ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : DisplayedName ;
stn−ops : paramName "displayedName" ;
stn−http : paramIn stn−http : Body ;

] ;
stn−ops : hasInput [

a stn−ops : Des c r ip t i on ;
stn−ops : paramName " d e s c r i p t i o n " ;
stn−http : paramIn stn−http : Body ;

] ;
stn−ops : hasOutput [

a stn−ops : Representat ion ;

108 Chapter 7. A Hypermedia-driven Social Web of Things

stn−ops : mediaType format : Turt le ;
stn−ops : entityType stn : UserAccount ;

] .

Listing 7.3: An operation description for the <#createUserAccount> operation
supported by the Does’ STN Box (see Listing 7.2).

7.1.3.2 Digital artifact container descriptions

Digital artifact containers are digital artifacts (see Definition 6.1.22) that may con-
tain other digital artifacts. The description of a digital artifact container is created
using terms defined by STN-Core and/or any of its extensions, and must include:

• the container type, which is stn:DigitalArtifactContainer or any of its
subclasses;

• the platform hosting the container, which is specified via the stn:hostedBy
property and is a member of stn:Platform or any of its subclasses;

• the type of digital artifacts, which is specified via the stn:memberType property
and is the class denoted by stn:DigitalArtifact or any of its subclasses.

Members of a digital artifact container are specified via the stn:contains prop-
erty. It is worth to note that digital artifact containers are similar to the basic
containers defined by the Linked Data Platform (see Section 2.3.3).

For illustrative purposes, in Listing 7.4 we present the description of a digital
artifact container hosted by the Does’ STN Box (see Listing 7.2) and whose members
are of type stn:UserAccount. This description lists the user accounts of David and
Sophia (see Listing 7.1) as members of the described container.

<http : / / 1 9 2 . 1 6 8 . 0 . 1 / u s e r s/>
a stn : D i g i t a lA r t i f a c tCon t a i n e r ;
s tn : hostedBy <http : / / 1 9 2 . 1 6 8 . 0 . 1 / . wel l−known/ stn/#platform> ;
stn : memberType stn : UserAccount ;
stn : conta in s <david . doe>, <sophia . doe> .

Listing 7.4: Description of a user account container hosted by the Does’ STN Box
(see Listing 7.2).

7.1.4 Digital artifact descriptions

A digital artifact description is created using STN-Core and/or any of its extensions.
For example, in Listing 7.1 we have already presented a description for David’s user
account.

Definition 7.1.3. (Digital artifact description) The digital artifact description of a
digital artifact is an RDF graph that describes the digital artifact and its relations
with other entities in the SWoT.

7.1. A Semantic Description Framework for STNs 109

Similar to agent and platform identifiers, dereferencing the uniform identifier of
a digital artifact should retrieve a representation of its digital artifact description.

Some platforms (see Definition 6.1.23) may directly produce RDF representa-
tions of digital artifacts using the STN ontology. Heterogeneity, however, is cen-
tral to the SWoT, and other platforms may use platform-specific data models and
formats. To address this issue, STN-Operations-HTTP defines an RDF mapping
language that clients can use to extract RDF data from heterogeneous data sources
that are modeled via two structures, namely name/value pairs and arrays of values.
These two structures are, for instance, the foundation of the JSON data interchange
format [Bray 2014]. Clients could also use a more general RDF mapping language9,
or they could outsource the data integration task to an external service.

For illustrative purposes, in Listing 7.5 we present a mapping created using
terms defined by STN-Operations and STN-Operations-HTTP that extracts an RDF
representation of a user account from a JSON representation of a Twitter user
account produced by the Twitter Public API v1.110. The JSON representation
of the Twitter user account contains several key/value pairs, such as the Twitter
screen name of the user account that is mapped to a platform-specific identifier via
the stn:id property. Other mappings include the name and description associated
with a Twitter user account, and the number of incoming/outgoing social relations
from/to other Twitter user accounts. We present more examples for extracting RDF
representations from heterogeneous data sources in Chapter 8.

<#twitterAccountJSONMapping>
a stn−ops : Representat ion ;
stn−ops : mediaType stn−http :JSON ;
stn−ops : entityType stn : UserAccount ;
stn−http : conta in s [

a stn−http : KeyValueMapping ;
stn−http : key "screen_name" ;
stn−http : STNterm stn : id ;
stn−http : datatype xsd : s t r i n g ;

] ;
stn−http : conta in s [

a stn−http : KeyValueMapping ;
stn−http : key "name" ;
stn−http : STNterm stn :name ;
stn−http : datatype xsd : s t r i n g ;

] ;
stn−http : conta in s [

a stn−http : KeyValueMapping ;
stn−http : key " d e s c r i p t i o n " ;
stn−http : STNterm stn : d e s c r i p t i o n ;
stn−http : datatype xsd : s t r i n g ;

] ;
stn−http : conta in s [

a stn−http : KeyValueMapping ;

9Such as the RDF Mapping Language (RML): http://semweb.mmlab.be/rml/spec.html, Ac-
cessed: 27.10.2015

10https://dev.twitter.com/overview/api/users, Accessed: 27.10.2015.

110 Chapter 7. A Hypermedia-driven Social Web of Things

stn−http : key " fr i ends_count " ;
stn−http : STNterm stn : outgoingConnect ions ;
stn−http : datatype xsd : integer ;

] ;
stn−http : conta in s [

a stn−http : KeyValueMapping ;
stn−http : key " fo l lowers_count " ;
stn−http : STNterm stn : incomingConnections ;
stn−http : datatype xsd : integer ;

] .

Listing 7.5: A mapping for extracting a digital artifact description of a user account
from a JSON representation of a Twitter user account.

7.2 Uniform Interfaces for STN Platforms

We use the STN ontology and the various types of descriptions presented in the
previous section to decouple software clients from STN platforms. Per Foundational
Principle 1 (conformity to REST), our aim is to obtain a uniform interface that
hides platform-specific implementation details and provides standardized access to
the SWoT environment. Software clients would then be able to use this interface to
operate across heterogeneous STN platforms.

The REST architectural style provides guidance on achieving uniform interfaces
in distributed hypermedia systems (see Section 2.1.1). Our goal, however, is to be
liberal in what platforms may be integrated into the SWoT. For instance, existing
Web platforms, such as social and WoT platforms, expose non-hypermedia APIs
(see Section 2.1.2). Furthermore, the SWoT may potentially extend to platforms
outside of the Web ecosystem. Therefore, a challenge that is important to the
successful development and adoption of the SWoT is to integrate heterogeneous,
non-hypermedia interfaces into a hypermedia-driven environment.

Our approach is based on the digital STN model introduced in Section 6.3, which
we defined in terms of digital artifacts (see Definition 6.1.22) and artifact-specific
operations (see Definition 6.1.11). To structure our discussion, we classify hetero-
geneous interfaces of STN platforms based on their mode of interaction with clients
guided by the following question: who performs operations on digital artifacts? If an
interface is defined in terms of operations invoked remotely by a client and performed
on the STN platform, we say the interface is control-driven. If an interface is defined
in terms of digital artifacts exchanged between a client and the STN platform, we
say the interface is data-driven. It is worth to note that RESTful interaction is
data-driven, whereas most existing Web platforms expose RPC-like APIs that are
more similar to control-driven interfaces (see Section 2.1.2).

In what follows, we first discuss REST’s uniform interface constraint in the
context of the SWoT and propose practical solutions to integration problems. We
then apply our discussion to achieve uniform interfaces for control-driven, data-
driven, and mixed interfaces of STN platforms. Our discussion in these last three

7.2. Uniform Interfaces for STN Platforms 111

sections focuses on the integration of non-hypermedia STN platforms into the SWoT.

7.2.1 Uniformity constraints

We reformulate REST’s interface constraints (see Section 2.1.1) in the context of
the SWoT as follows:

C1 digital artifacts are uniformly identified in the SWoT;

C2 digital artifacts are manipulated via representations;

C3 messages exchanged between components are self-descriptive;

C4 interaction between clients and STN platforms is driven by hypermedia.

We discuss each of these interface constraints in further detail in what follows.

7.2.1.1 Identification of digital artifacts

Per C1, digital artifacts must be uniformly identified in the SWoT such that they can
be referenced globally and independent of context. On the Web, resources are uni-
formly identified by means of URIs. The APIs of existing Web platforms, however,
typically use platform-specific identifiers to identify resources (see Section 2.1.2).
Therefore, in order to integrate into the SWoT environment digital artifacts identi-
fied within the context of an STN platform, it is necessary to encapsulate the context
within the reference to the digital artifact. We propose that a digital artifact is uni-
formly identified in the SWoT by a URI [Berners-Lee 2005], or it is identified by a
tuple given by the URI of its hosting STN platform and a platform-specific iden-
tifier of the digital artifact. Per our discussion in Section 7.1.3, dereferencing the
identifier of an STN platform should return a platform description that clients can
use to access the platform and retrieve the referenced digital artifact.

For illustrative purposes, in Listing 7.1 (David’s SWoT profile), David’s user
account on his STN Box is identified via an HTTP URI, and his user accounts on
Twitter and Facebook can be identified via the platforms’ HTTP URIs and platform-
specific identifiers. For the former, clients can directly dereference the HTTP URI
of David’s user account via an HTTP GET request to retrieve a usable representation
from David’s STN Box. For the last two user accounts, however, clients would
first have to dereference the HTTP URIs of Twitter and Facebook to retrieve the
platform descriptions in order to “learn” how to use the platform-specific identifiers
to retrieve representations of David’s user accounts. We present descriptions for the
Twitter and Facebook platforms in Chapter 8.

7.2.1.2 Manipulation of digital artifacts via representations

Per C2, digital artifacts must be manipulated via representations exchanged between
components. Representations are serializations of the current or intended states
of digital artifacts and their purpose is to hide implementation details, such as

112 Chapter 7. A Hypermedia-driven Social Web of Things

platform-specific data types and models, behind a set of standard media types (see
Section 2.1.1 for more details).

This interface constraint emphasizes a minimal requirement for any interface
that is to be integrated into the SWoT into a useful manner: the interface should
at least produce some representations of resources that can be mapped to digital
artifact descriptions (see Section 7.1.4).

7.2.1.3 Self-descriptive messages

Per C3, messages exchanged between SWoT components have to be self-descriptive,
which implies that SWoT components must be able to reliably process messages
using only standardized knowledge, such as standard methods (e.g., the methods
defined by HTTP 1.1 [Fielding 2014c] or CoAP [Shelby 2014a]) and standard media
types11. It is, therefore, necessary to standardize the processing of domain-specific
digital artifact representations, which can be achieved by:

• defining new media types to fit SWoT-specific requirements;

• extending standard media types via semantic information.

Defining new media types can be particularly useful in the context of the WoT as
a means to optimize the production and consumption of resource representations for
resource-constrained devices. Examples of data formats and media types designed
for constrained devices include, among others, the Concise Binary Object Represen-
tation [Bormann 2013] data format and associated media type, and ongoing work on
media types for sensor measurements12. We leave it as future work to further inves-
tigate the development of SWoT-specific media types for highly resource-constrained
devices (see Chapter 10).

Throughout the rest of this dissertation, we take the second approach, which
may be preferable for less constrained devices and general purpose applications:
we use standard media types for RDF serialization formats, in particular Tur-
tle [Beckett 2008], and the STN ontology. The advantage of decoupling the interpre-
tation of representation semantics from media types is that clients could potentially
adapt to new vocabularies more easily than to new media types.

This interface constraint raises two challenges for the integration of existing
platforms into the SWoT (cf. discussion in Section 2.1.2). First, it is not uncom-
mon for existing HTTP-based APIs to use the protocol in a non-standard manner,
such as deleting resources via HTTP POST. Second, in the absence of standard me-
dia types for their particular application domains (e.g., social applications), most
existing Web platforms expose platform-specific data models serialized using stan-
dard data interchange formats, such as JSON [Bray 2014]. These factors lead to
interface heterogeneity and, in order to interact with each platform, clients must

11A complete list of registered media types is available at:
http://www.iana.org/assignments/media-types/media-types.xhtml, Accessed: 25.11.2015.

12https://tools.ietf.org/html/draft-jennings-core-senml-02, Accessed: 22.11.2015.

7.2. Uniform Interfaces for STN Platforms 113

hard-code knowledge provided by out-of-band documentation. As a practical solu-
tion to address these issues and integrate existing platforms into the SWoT, platform
authorities or third parties can use the STN ontology (see Section 7.1.1) to publish
platform descriptions (see Section 7.1.3). In Chapter 8, for instance, we present
platform descriptions for Facebook, Twitter, SoundCloud, and Dweet.io.

7.2.1.4 Hypermedia-driven interaction

Per C4, the interaction between a client and an STN platform must be driven by
hypermedia. That is to say, in any given application state, the client should be able
to choose from a selection of states provided by the STN platform. Furthermore,
the instructions to transition to a new state should be provided via hypermedia (see
Section 2.1.1 for further clarifications). Hypermedia-driven interaction is central to
decoupling clients from STN platforms.

In a SWoT application, a client can transition to new application states by:

• following references encoded in representations of digital artifacts (e.g., hyper-
links, David’s Twitter account description in Listing 7.1);

• performing operations (see Definition 6.1.11) on digital artifacts;

• receiving notifications from an STN platform when the state of a digital artifact
has changed, if such an interaction mechanism is implemented (e.g., via the
CoAP Observe option [Hartke 2015]).

Given one or more entry points into a hypermedia-driven SWoT, such as the
URI of David’s STN Box (see examples in Section 7.1), a social thing should be able
to autonomously participate in a continuously evolving ecosystem, without hard-
coding references that could break at any time. This interface constraint is thus
closely related to the discovery of entities (see Definition 6.1.1) in the SWoT. Our
proposal relies on several elements to enhance hypermedia-driven interaction and
discoverability :

• the social connectivity principle (see Foundational Principle 2) enforces rela-
tions among entities in the SWoT, which are reified in the digital world via
references across digital artifacts, such as user accounts or SWoT profiles;

• SWoT profiles enable the discovery of user accounts held by agents across var-
ious STN platforms, and thus serve as convergence points for digital STNs that
may otherwise be disconnected from one another (e.g., David’s SWoT profile
in Listing 7.1 enables the discovery of the digital STNs hosted by David’s STN
Box, Twitter, and Facebook);

• hosting relations (see Definition 6.1.24) encoded in digital artifact descriptions
(see Section 7.1.4) via the stn:hostedBy property (see Section 7.1.1.1) enable
the discovery of platform descriptions (see Section 7.1.3).

114 Chapter 7. A Hypermedia-driven Social Web of Things

Most existing Web platforms expose non-hypermedia APIs (see Section 2.1.2).
In the absence of hypermedia, interaction with the APIs is driven by out-of-band in-
formation provided as human-readable documentation. Consequently, clients must
hard-code the knowledge required to transition between application states, such as
URIs or URI templates (see also our discussion of interface constraint C3). Platform
descriptions provide a means to represent this knowledge in a reusable, machine-
readable format, and hosting relations provide a means to make platform descrip-
tions discoverable, therefore essentially bringing in-band all the out-of-band infor-
mation that clients need in order to autonomously retrieve and manipulate digital
artifacts in the SWoT regardless of the underlying hosting platforms.

It is worth to note that third parties can create and publish platform descriptions
to extend the SWoT to existing platforms, and non-hypermedia STN platforms in
general, with minimal effort and without requiring “buy-in” from platform authori-
ties, which is an important factor for the successful development of the SWoT. Such
platform descriptions, however, are static and have to be constantly maintained in
order to reflect the evolution of the described STN platforms, an issue that can
be alleviated to some extent via API versioning. In other words, platform descrip-
tions enable clients to “learn” on-the-fly how to interface with non-hypermedia STN
platforms, however, once they do, they become tightly coupled to the described in-
terfaces: if the platform descriptions become obsolete, the clients break. Developers
of STN platforms that aim for a stronger integration into the SWoT should provide
hypermedia APIs.

Hypermedia controls

A distinctive characteristic of a hypermedia API is that it conveys to clients the
next reachable states in an application and how to make transitions to those states.
The information is encoded in controls that are included in representations trans-
mitted to clients and processed according to specified media types. For instance,
HTML forms instruct Web browsers how to collect user input and transmit it to an
origin server. Therefore, hypermedia controls extend standard interaction protocols,
such as HTTP [Fielding 2014c] or CoAP [Shelby 2014a], with information meant to
further specify the interaction between components in a dynamic fashion. This is
an important factor to minimize the coupling between clients and STN platforms.
However, the disadvantage of embedding hypermedia controls in representations ex-
changed between components is decreased network efficiency. Network efficiency is
especially important in the context of the IoT.

Per our discussion of constraint C3 (see Section 7.2.1.3), we leave it as future
work to develop SWoT-specific media types optimized for resource-constrained de-
vices. Nevertheless, hypermedia APIs can already use the STN ontology to include
operation descriptions (see Section 7.1.3.1) in RDF representations transmitted to
clients. A more detailed discussion on the development of hypermedia APIs is avail-
able in [Webber 2010].

7.2. Uniform Interfaces for STN Platforms 115

Linked Data

Hypermedia controls trade network efficiency for loose coupling. An approach to
alleviate the former is to further standardize interaction in the SWoT. That is to
say, clients and STN platforms can hard-code SWoT-specific conventions for inter-
acting with other components via standard interaction protocols, and leave it to
hypermedia controls to deliver any platform- and application-specific details.

Based on the suggestions we presented thus far, it is worth to note at this
point that the world-wide STG is, in fact, represented in the SWoT as linked data
(see Section 2.3.3). The Linked Data Platform (LDP) [Speicher 2015] already pro-
vides a standard set of conventions for reading and writing linked data on the Web
via HTTP. Furthermore, the LDP enforces connectivity, for instance, by impos-
ing that conforming LDP servers must automatically manage containment and
membership relations between LDP containers and the LDP resources they con-
tain (see [Speicher 2015] for details).

We suggest that the LDP can provide a standard-compliant foundation for inter-
action between clients and STN platforms. The LDP can be further extended with
SWoT-specific conventions, such as imposing on STN platforms to automatically
manage hosting relations whenever a digital artifact is created in a digital artifact
container (see Section 7.1.3.2). We leave it as future work to further investigate
this possibility (see Chapter 10), in particular in the context of resource-constrained
devices, which raises new questions. For instance, the LDP is currently based ex-
clusively on HTTP, however, CoAP is a cornerstone protocol for the WoT (see
Section 2.4). CoAP supports a subset of the features provided by HTTP, which
includes content negotiation and conditional requests [Shelby 2014a]. Many of the
core LDP conventions may thus be directly applicable to constrained environments
via HTTP-CoAP translation [Shelby 2014a], while other aspects remain to be in-
vestigated.

In the following sections, we further discuss our suggestions for integrating het-
erogeneous STN platforms into a hypermedia-driven environment for the SWoT. We
classify heterogeneous interfaces based on their mode of interaction with clients by
answering the question: who performs operations (see Definition 6.1.11) on digital
artifacts (see Definition 6.1.22)?

7.2.2 Control-driven interfaces

We say that an interface of an STN platform is control-driven if it is defined in
terms of operations (see Definition 6.1.11) that are invoked remotely by clients and
executed on the STN platform.

It is worth to note that many existing Web APIs are control-driven (see Sec-
tion 2.1.2). For an illustration, “following” (i.e., creating a relation to) a Twitter
account via the Twitter Public API v1.1 can be performed by issuing the following
HTTP request:13

13Example provided by the Twitter Public API v1.1 documentation:

116 Chapter 7. A Hypermedia-driven Social Web of Things

POST https://api.twitter.com/1.1/friendships/create.json?user id=1401881

In this example, the request URI encodes the operation to be performed (i.e.,
create friendship) and a required parameter whose value is a platform-specific iden-
tifier of the targeted user. This approach of transferring information over the Web is
also referred to as URI tunneling [Webber 2010]. If the operation is successful, the
API returns a JSON-based platform-specific representation of the followed Twitter
account. Therefore, conceptually mapping the CreateRelationTo operation defined
by our digital STN model to Twitter’s API is straightforward (cf. formal definition
in Section 6.3.2):

• the platform parameter is determined by the authority component of the
URI [Berners-Lee 2005];

• the performing agent parameter is determined by means of HTTP authenti-
cation [Fielding 2014a];

• the targeted user account is determined via an explicit input parameter;

• the output provides a representation that can be mapped to a digital artifact
description (see Listing 7.5).

The operation is invoked remotely by the client and performed by the Twitter
platform. It is worth to note that HTTP is used here as a transport protocol, and
not as an application protocol. Deleting a relation to a Twitter account is performed
via a similar HTTP POST request by replacing “create” with “destroy” in the request
URI. Therefore, we conclude that this example, and URI tunneling in general, breaks
uniformity constraints C1, C3, and C4 (see Section 7.2.1).

Generalizing from our above example, control-driven non-hypermedia STN plat-
forms can be integrated into the SWoT by mapping the operations defined by our
digital STN model (see Section 6.3) to the ones supported by the platform’s interface
via platform descriptions (see Section 7.1.3), which can be advertised to clients by
means of hosting relations (see Section 7.2.1.4). In other words, clients are provided
with machine-readable service contracts that encode the knowledge necessary to in-
terface with the platforms. These service contracts, however, are static, which we
have already discussed in Section 7.2.1.4. We discuss further the advantages and
disadvantages of this integration strategy in Section 7.3.

Developers of control-driven STN platforms that wish to achieve a stronger in-
tegration into the SWoT can use the STN ontology and follow our suggestions in
Section 7.2.1 to provide a hypermedia API.

7.2.3 Data-driven interfaces

We say that an interface of an STN platform is data-driven if it is defined in terms
of digital artifacts exchanged with clients by means of methods and data formats

https://dev.twitter.com/rest/reference/post/friendships/create, Accessed: 22.11.2015.

7.2. Uniform Interfaces for STN Platforms 117

with a shared understanding between clients and the STN platform. In data-driven
interactions, the operations defined by our digital STN model (see Section 6.3.2) are
performed on the client side, and the resulting states of digital artifacts are then
transferred to STN platforms.

Per our discussion in Section 2.1.2, many existing Web APIs implement a Create,
Read, Update, Delete (CRUD) interface via a subset of the HTTP verbs (e.g., GET,
POST, PUT, DELETE), also referred to as CRUD Web services [Webber 2010]. These
non-hypermedia services use HTTP as an application protocol, however, they gen-
erally violate uniformity constraints C1, C3, and C4 (see Section 7.2.1): they use
platform-specific identifiers, platform-specific data models serialized using general
data interchange formats (e.g., JSON [Bray 2014]), and are driven by out-of-band
information. It is worth to note, in fact, that existing CRUD Web services exhibit
behavior that is similar to non-hypermedia control-driven interfaces: the operation
to be performed is encoded via an (HTTP method, URI) tuple that is hard-coded
into the client, and the operation’s parameters are encoded within the transferred
representation, in most cases in terms of key-value pairs. Therefore, existing CRUD
Web services can be integrated into a hypermedia-driven SWoT in a similar manner
to control-driven interfaces, that is by providing platform descriptions (see Sec-
tion 7.1.3) to translate the operations defined by our digital STN model to the
service. The main integration shortcoming, however, remains that clients have to
rely on static service contracts to interact with the platforms.

To achieve a stronger integration into the SWoT, developers of data-driven
STN platforms can follow our suggestions in Section 7.2.1 to expose hypermedia
interfaces, for instance, by providing clients with data-guided controls or an LDP-
compliant interface.

7.2.4 Mixed interfaces

Following our discussion in the previous sections, it is worth to note that existing
Web APIs are highly heterogeneous and it is not always straightforward to classify
them as control- or data-driven. In most cases, however, Web APIs behave in a
manner that is more similar to control-driven interaction, whereas the REST archi-
tectural style is centered around data-driven interaction. Furthermore, even though
non-hypermedia APIs are not aligned with the REST architectural style, they are
simple and intuitive to most developers, which is an important argument for their
success on the Web. It is also worth to note that public Web APIs tend to have
a low change frequency and to use API versioning, which alleviates the integration
problems related to their evolution over time.

Given the above arguments and that we provide solutions to integrate control-
driven non-hypermedia APIs into a hypermedia-driven environment for the SWoT,
a claim that we demonstrate in Chapter 8, it is worth to bring into discussion
the possibility of exposing mixed interfaces for STN platforms. In some use cases,
mixed interfaces could be useful to leverage the benefits of both worlds: provide
a baseline data-driven interface (e.g., a linked data API) that follows our digital

118 Chapter 7. A Hypermedia-driven Social Web of Things

STN model to ensure a deep integration into the SWoT, and extend this interface
with simple control-driven interfaces that can be easily understood by developers
and can, for instance, extend our digital STN model with new digital artifacts and
artifact-specific operations. As a practical example, a few existing WoT platforms
already allow developers to dynamically extend platform capabilities by publishing
application-specific Web APIs to be hosted by the platforms (see Section 3.1).

7.3 A Five-level Integration Strategy for STN Platforms

We apply the elements and suggestions introduced in the previous sections to pro-
pose a progressive, five-level strategy for the development of STN platforms and their
integration into the SWoT. Each level increasingly restricts the design and imple-
mentation autonomy of STN platforms to the benefit of achieving greater alignment
with the SWoT, which in turn ensures greater interoperability with SWoT clients.
For instance, most existing social platforms can be integrated into the SWoT as
Level 1 STN platforms with minimal effort and without requiring the support of
platform authorities, however, their utility to social things would most likely be
limited. Level 5 STN platforms must conform to several design and implementation
choices, however, they are also most useful to social things and necessary building
blocks of the envisioned IoT ecosystem.

It is worth to note that we generally use the term STN platform to refer to
platforms that interconnect people and things in network-like structures that can
be represented as STNs (see Chapter 6). Per Foundational Principle 2 (social con-
nectivity), having explicit typed relations among people and things is central to our
vision and an important factor to enhance discoverability in the SWoT (see Sec-
tion 7.2.1.4). Nevertheless, the SWoT can also benefit from platforms that enable
interaction among people and/or things without explicitly representing the relations
among them. This is the case, for instance, of most existing WoT platforms.

7.3.1 Level 1: Publish a platform description

The first step to integrate any platform into the SWoT is to provide a platform
description (see Section 7.1.3) that enables software clients to reliably interface with
the platform. Any heterogeneous platform that provides a valid platform description
is a Level 1 STN platform.

The most straightforward approach to publish a platform description on the
Web is as a standalone STN description document (see Section 7.1.3), which can be
created and advertised by platform authorities or trusted third parties. A platform
description can also be distributed across multiple interlinked documents reachable
from the platform’s STN description document, which may be useful, for instance,
to optimize network usage or to isolate components of an interface that tend to
change more frequently than others.

We suggest to publish STN description documents via a standardized well-known
URI [Nottingham 2010], such as /.well-known/stn. This suggestion helps to pre-

7.3. A Five-level Integration Strategy for STN Platforms 119

vent URI collisions and provides a means to avoid imposing unnecessary constraints
on the URI structure of STN platforms (cf. best practices for URI design and owner-
ship [Nottingham 2014]). Clients can also hard-code the standardized URI to easily
test if a random platform they encounter is an STN platform or not.

The main advantage of this integration strategy is that third parties can extend
the SWoT to existing platforms with minimal effort and without requiring “buy-in”
from platform authorities, which is an important factor for the successful develop-
ment of the SWoT. Another advantage is that STN description documents can be
discovered, accessed and used in a simple manner. The documents can be cached
(e.g., locally, close to the edge of the network) to improve network efficiency.

An important disadvantage of relying on static platform descriptions, as already
discussed in Section 7.2.1.4, is that they have to be constantly maintained in order
to reflect the evolution of the described platforms. In the case of existing public
Web APIs, however, as noted in Section 7.2.4, the change frequency is generally low
and this integration issue can also be mitigated further via API versioning.

Another drawback of relying solely on STN description documents is that they
can become significantly large, and thus less suitable for resource-constrained de-
vices. Furthermore, this integration strategy relies on clients to integrate data from
heterogeneous sources, which can be a costly task. These problems can be mitigated
via intermediary components (i.e., proxies) that encapsulate the heterogeneous in-
terfaces of one or more STN platforms behind a uniform interface optimized for
resource-constrained devices.

7.3.2 Level 2: Enable social things as first-class citizens

A core tenet of our vision is that social things are enabled as first-class citizens of
the SWoT (see Section 5.3.1). A Level 2 STN platform is any Level 1 STN platform
that exposes via its API all the basic operations required to access the platform’s
main features, such as exchanging messages or managing social relations with other
users. Social things are, therefore, full-fledged users of Level 2 STN platforms. Most
existing WoT platforms fit this description and can be integrated into the SWoT as
Level 2 STN platforms. It is worth to note, however, that WoT platforms do not
typically expose explicit relations among things (see Chapter 3).

Depending on the degree of alignment between a platform’s model and our digital
STN model (see Section 6.3), social things may have limited access to platform
features. In addition, the data integration step can also still limit the utility of
Level 2 STN platforms. These integration issues can be alleviated by extending
our digital STN model and the STN ontology (see Section 7.1.1) with domain- and
platform-specific models and vocabularies.

7.3.3 Level 3: Produce STN-compliant representations

A Level 3 STN platform is any Level 2 STN platform that produces representations
of social artifacts in conformance with our digital STN model (see Section 6.3.3),

120 Chapter 7. A Hypermedia-driven Social Web of Things

using terms defined by the STN ontology, and standard media types.
Avoiding the cumbersome task of integrating data from heterogeneous sources

greatly simplifies the integration process. For SWoT clients, it enables them to
directly consume representations produced by STN platforms, which decreases in-
tegration costs and avoids intermediary components or loss of data. For STN plat-
forms, it increases the audience in terms of potential clients. It also diminishes tight
coupling by significantly reducing the out-of-band information required to interface
with the platform, and thus also reducing the size of STN description documents.

It is worth to note that, by conforming to the digital STN model, it is expected
that Level 3 STN platforms provide explicit representations of relations among their
users. This constraint enforces hypermedia-driven interaction and discoverability in
the SWoT.

7.3.4 Level 4: Expose a uniform API

Producing representations that any SWoT client can reliably interpret is already
an important step towards exposing a uniform interface. Going further, a Level 4
STN platform is any Level 3 STN platform that exposes an API conforming to the
uniformity constraints in Section 7.2.1.

Uniform interfaces bring the important benefit of loose coupling, which simplifies
the development of SWoT clients and ensures that STN platforms provide services
that are compatible with and useful to a larger number of SWoT clients. Uniform
interfaces are essential to the development of a long-lived IoT ecosystem in which
components can be deployed and can evolve independently from one another.

Per our discussion in Section 7.2.1.4, it is worth to note that hypermedia APIs,
and in particular linked data, seem to be a promising approach for extending the
SWoT to resource-constrained devices.

7.3.5 Level 5: Make the platform open

The last step towards achieving a greater integration into the SWoT is support for
openness. A Level 5 STN platform is any Level 4 STN platform that supports cross-
platform participation and open standards and mechanisms for uniquely identifying
SWoT clients.

Support for cross-platform participation implies that identifiable agents in the
SWoT should be able to interact with other identifiable agents without being con-
fined to the STN platforms they use. A cross-platform feature that is important to
enhance discoverability in the SWoT is to allow agents to create relations to/from
entities in the ecosystem, regardless of their hosting platforms. In our scenarios in
Section 5.1, David and his friends own STN Boxes, and the relations among them
span across their STN Boxes.

Securely and uniquely identifying agents globally is an important problem to
be addressed, which we leave as future work (see Chapter 10). It is worth to
note, however, that practical solutions to this problem are already within reach.

7.4. Summary 121

HTTP benefits from many security-related features, and there are ongoing efforts
for the standardization of authentication and authorization mechanisms for con-
strained networks14. We suggest to investigate the use of open standards and de-
centralized single sign-on systems, such as OpenID Connect [Sakimura 2014] and
WebID [Sambra 2015a], with certificate-based authentication for social things when-
ever appropriate.

7.4 Summary

In this chapter, we addressed Research Question 3, that is how to enable things
to transcend Web silos. Our approach is to integrate heterogeneous STN platforms
into a hypermedia-driven environment for the SWoT. To this purpose, we applied
the REST architectural style (per Foundational Principle 1) and the digital STN
model (see Section 6.3) to provide solutions for achieving uniform interfaces for
heterogeneous STN platforms, and for enhancing hypermedia-driven interaction and
discoverability across STN platforms.

In Section 7.1, we introduced a semantic description framework that we use
to create descriptions of digital STNs and their hosting platforms. Platform de-
scriptions (see Section 7.1.3) are central to our approach for dealing with plat-
form heterogeneity: they enable platform authorities and third parties to repre-
sent the knowledge that is required to interface with heterogeneous STN platforms
in machine-readable format, knowledge that is otherwise provided as out-of-band
human-readable documentation (see Section 2.1.2). SWoT clients can then reliably
process platform descriptions to “learn” on-the-fly how to interface with heteroge-
neous platforms. We applied our semantic description framework in Section 7.2,
where we discussed solutions to create hypermedia APIs for STN platforms and to
integrate heterogeneous, non-hypermedia APIs into a hypermedia-driven SWoT. In
Section 7.3, we proposed a five-level strategy for the development of STN platforms
and their integration into the SWoT that enables a progressive alignment with our
vision.

It is worth to note that our approach for integrating existing platforms into the
SWoT does not impact existing APIs and does not require “buy-in” from platform
authorities. We demonstrate this claim, and our approach to create a hypermedia-
driven SWoT, in the next chapter, where we deploy a world-wide socio-technical
graph that extends to multiple existing platforms, such as Facebook and Twitter.

14Such as the efforts of the IETF Authentication and Authorization for Constrained
Environments (ACE) working group: https://datatracker.ietf.org/wg/ace/documents/, Ac-
cessed: 27.11.2015.

Part III

Experience and Validation

Chapter 8

Deploying a World-Wide
Socio-technical Graph

Contents
8.1 Integrating Existing Platforms into the SWoT 126

8.1.1 Facebook . 127

8.1.2 SoundCloud . 131

8.1.3 Twitter . 133

8.1.4 Dweet.io . 135

8.1.5 Discussion . 139

8.2 ThingsNet: a Level 5 STN Platform 141

8.2.1 Design and implementation 142

8.2.2 API overview . 143

8.2.3 Discussion . 145

8.3 Deployment of a World-Wide Socio-technical Graph 146

8.3.1 Deployment scenario . 146

8.3.2 A browser for STNs . 147

8.3.3 Discussion: browsing the Social Web of Things 149

8.4 Summary . 152

In Part II of this dissertation, we presented our vision and approach to bring
about an open and self-governed IoT ecosystem of people and things, which we call
the Social Web of Things (SWoT). Our proposal emphasizes heterogeneity, discov-
erability, and flexible interaction in the envisioned IoT ecosystem. We begin the
evaluation of our work by focusing on the former characteristic. We discuss the
other two in Chapter 9.

The backbone of the SWoT is a global environment sustained by heterogeneous
platforms. In Chapter 6, we defined a model for digital socio-technical networks
(STNs), and in Chapter 7 we applied this model and the REST architectural style
(per Foundational Principle 1) to propose solutions to create a hypermedia-driven
environment for the SWoT. The defining characteristic of this environment is that
it hosts a world-wide socio-technical graph (STG) (see Definition 6.1.10) distributed
across heterogeneous STN platforms that social things (see Definition 6.1.7) can
navigate and manipulate in a uniform fashion.

126 Chapter 8. Deploying a World-Wide Socio-technical Graph

In this chapter, we validate our proposal by deploying an STG distributed across
multiple existing social and WoT platforms, and across multiple instances of a
Level 5 STN platform (see Section 7.3). In Section 8.1, we discuss the integration
into the SWoT of several widely used social platforms, namely Facebook, SoundCloud
and Twitter, and a WoT platform, that is Dweet.io. In Section 8.2, we present our
implementation of a Level 5 STN platform, which we call ThingsNet. In Section 8.3,
we deploy an STG distributed across all these platforms, and show how a Web ap-
plication that can interpret platform descriptions (see Section 7.1.3) enables human
users to seamlessly navigate and manipulate the deployed STG stating from a sin-
gle entry point in the SWoT. This application, which we call an STN browser, is
thus able to “learn” on-the-fly how to interface with the platforms underlying the
deployed STG.

8.1 Integrating Existing Platforms into the SWoT

In this section, we discuss the integration of Facebook, SoundCloud, Twitter and
Dweet.io into the SWoT. Based on our integration strategy in Section 7.3, Facebook
can be integrated into the SWoT as a Level 1 STN platform (i.e., social things are
not first-class citizens), and the other three platforms as Level 2 STN platforms
(i.e., social things are first-class citizens). We discuss this further in the following
sections. Facebook, SoundCloud and Twitter can contribute to the world-wide STG
with their social graphs, whereas Dweet.io does not feature explicit relations between
things.

For each platform, we structure our discussion as follows:

• Platform overview: we present briefly the major features of the platform
that are relevant in the context of the SWoT following the dimensions defined
in Section 6.1, that is the digital, social, spatial and normative dimensions;

• API overview: we provide an overview of the platform’s API, discuss to
what extent social things can access and use platform features, and provide
examples of API calls that can be used to implement operations defined by
our digital STN model (see Section 6.3.2);

• STN platform description: we discuss the platform’s STN description doc-
ument (see Section 7.1.3) that we create using the STN ontology (see Sec-
tion 7.1.1).

The complete STN description documents for the platforms presented in this
section are available in Appendix A.

After discussing each platform individually, in Section 8.1.5 we conclude with an
analysis of the extent to which these platforms can be “interweaved” into a world-
wide STG.

8.1. Integrating Existing Platforms into the SWoT 127

8.1.1 Facebook

Facebook1 is an online social networking service that enables its users to create and
maintain online relations with one other. As of September 30, 2015, Facebook has
a staggering 1.55 billion monthly active users.2

8.1.1.1 Platform overview

Facebook is a social platform designed for people, and has a strong policy against
user accounts not associated with real people, user accounts that provide false per-
sonal information, or people with multiple user accounts.3 Organizations and other
entities may have a presence on Facebook via Facebook Pages. As such, social things
cannot be first-class citizens on Facebook, and thus Facebook can be integrated into
the SWoT as a Level 1 STN platform (see Section 7.3). That is to say, given a valid
platform description (see Section 7.1.3), social things can use the Facebook platform
primarily to read data from its rich social graph.

The digital dimension

Facebook user accounts carry rich information about their holders, which may in-
clude general information (e.g., name, website, contact details), albums of personal
photographs and videos, or various things the user likes, such as books, movies, or
music. Many real-world entities have digital counterparts in the form of Facebook
Pages, which may fall in various categories (e.g., TV shows, sports teams, restau-
rants). Places have digital counterparts via Facebook Places, which can thus be
represented as digital places (see Definition 6.1.29). Other types of digital artifacts
include Facebook Groups, which can be represented as digital groups (see Defini-
tion 6.1.27), private or public messages, which can be represented as digital messages
(see Definition 6.1.28).

The social dimension

Facebook users can establish bidirectional “friendship” relations with one another,
which can be represented as two unidirectional social relations (see Definition 6.1.13),
via a request/response interaction model. Some Facebook relations carry more
meaning than the standard friendship relations, such as family relations (e.g., mother,
brother). Users can interact via messages (e.g., private messages, public posts and
comments, tagging), and they can reinforce (i.e., “like”) and disseminate content
created by other users. The latter features, and interaction with content in general,
are not currently covered by our digital STN model. Users can also create, join,
leave or invite other users to Facebook Groups, which may be used, for instance,
to enable and concentrate communication with Facebook users sharing a common
interest. These features can be represented via the digital STN model.

1http://www.facebook.com/
2http://newsroom.fb.com/company-info/, Accessed: 28.11.2015.
3https://www.facebook.com/legal/terms, Accessed: 28.11.2015.

128 Chapter 8. Deploying a World-Wide Socio-technical Graph

The spatial dimension

Public messages can carry geospatial information via linking to a Facebook Place.
It is worth to note that Facebook does not feature a specific operation type (see
Definition 6.1.12) to “check into” a digital place (see Section 6.3.3), however, the
location of a user may be inferred based on the content he or she publishes.

The normative dimension

Interactions on Facebook, from navigating the social graph to disseminating infor-
mation, are governed by complex privacy settings managed by users.

8.1.1.2 API overview

The Facebook platform provides a non-hypermedia API, that is the Facebook Graph
API v2.44. It is worth to note that platform resources are, in fact, assigned URIs
of the form /{api version}/{node id}, however, returned representations include
only platform-specific identifiers (i..e, the node id parameter). The API produces
JSON-based [Bray 2014] representations using platform-specific data models. These
observations can be noted in the API example in Listing 8.1. Therefore, Facebook’s
API breaks uniformity constraints C1, C3 and C4 in Section 7.2.1.

As noted in the previous section, Facebook’s policies enforce the preservation of
a social network composed exclusively of people described by accurate information.
Furthermore, Facebook’s API provides a rich variety of endpoints to read data
from Facebook’s social graph, whereas support to write data to the social graph
is much more limited. For instance, several endpoints expose the various facets of
the data associated with a user account (i..e, a Facebook profile), however, a third
party application can post public messages only on behalf of a Facebook user and
it cannot, for instance, send private messages or manage social relations with other
users.

Listing 8.1 shows a Facebook-specific implementation of theGetOutgoingRelations

operation type defined in Section 6.3.2. One of the particularities of Facebook’s API
is that, for instance, requests to retrieve representations of user accounts rely on
query parameters to specify the fields to be returned within the representations (cf.
Listing 8.1). The returned fields are subject to privacy policies and typically require
explicit permission from users.

GET /v2 .4/1550387481863557/ f r i e n d s ? f i e l d s=id ,name, webs i te HTTP/1 .1
Host : graph . facebook . com
Author i zat ion : Bearer CAAByOV4ZA5O . . . mHIZA78gZDZD

HTTP/1.1 200 OK
Content−Type : app l i c a t i o n / j son ; cha r s e t=UTF−8
ETag : " babd881296d1ab6c09115a9e0c699fa5ea2e803a "
Facebook−API−Vers ion : v2 . 4

4https://developers.facebook.com/docs/graph-api, Accessed: 28.11.2015.

8.1. Integrating Existing Platforms into the SWoT 129

Content−Length : 511

{
"data" : [

{
" id " : " 295402373983233" ,
"name" : " J enn i f e r Amedjdahf i i f Schrockson "

} ,
{

" id " : " 1475781352713478" ,
"name" : "John Amhddhhbbihd Fergieman"

}
] ,
" paging " : {

"next " : " https : // graph . facebook . com/v2 .4/1550387481863557/ f r i e n d s
? f i e l d s=id , name , webs i te&l im i t=25&o f f s e t=25&__after_id=enc_Ad
. .XX"

} ,
"summary" : {

" total_count " : 2
}

}

Listing 8.1: The Facebook friends of a user identified by {user id} are retrieved via
an HTTP GET request to /v2.4/{user id}/friends?fields={account fields}.
The request header includes an OAuth access token [Hardt 2012] that authorizes the
request. Access to most user account fields requires explicit user-granted permission,
such as the website field in this example.

8.1.1.3 STN description document

The STN description document we have created for Facebook is available in Ap-
pendix A. An extract from this document is shown in Listing 8.2. Facebook’s STN
platform description includes multiple agent operations (see Section 6.3.2), such as
retrieving the outgoing and incoming social relations of a user account. Given that
on Facebook social relations are bidirectional, both of these operations are, in fact,
implemented in the same manner. It is worth to note that in our description, we
only request the id, name, and website fields (cf. Listing 8.2). The latter field
may be used, for instance, to retrieve digital artifacts outside of the social network.
In Section 8.3, we use the website field to advertise the SWoT profiles (see Sec-
tion 7.1.2) of Facebook users. More detailed representations of user accounts may
be requested via the GetUserAccount operation type (see Section 6.3.3.1).

@base <http ://www. facebook . com/> .

<#platform>
a stn : Platform ;
stn :name "Facebook" ;
stn−http : baseURL <https : // graph . facebook . com/v2.4/> ;

130 Chapter 8. Deploying a World-Wide Socio-technical Graph

stn−http : supportsAuth stn−http :OAuth ;
stn−http : consumes stn−http :JSON ;
stn−http : produces stn−http :JSON ;
stn−ops : supports <#getAccount> ,

<#getOutConnections> ,
<#getInConnect ions> ,
. . .
<#getGroupFeed> .

<#getOutConnections>
a stn−ops : GetOutgoingRelat ions ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI " / : id / f r i e n d s ? f i e l d s=id , name , webs i te " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : UserAccountID ;
stn−http : key " : id " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput <#fbFriendsJSONMapping> .

Listing 8.2: Retrieving the friends of a Facebook user is performed via an authorized
HTTP request and requires one path parameter as input, i.e. the identifier of the
targeted user account.

The output mapping for retrieving the Facebook friends of a user, shown in List-
ing 8.3, extracts the JSON array of user account representations from the payload
returned by the Facebook API (cf. Listing 8.1) and maps each element of the array
to an RDF representation of an stn:UserAccount (see Section 7.1.4).

<#fbFriendsJSONMapping>
a stn−http : JSONArray ;
stn−http : key "data" ;
stn−http : arrayOf <#fbAccountJSONMapping> .

<#fbAccountJSONMapping>
a stn−ops : Representat ion ;
stn−ops : mediaType stn−http :JSON ;
stn−ops : entityType stn : UserAccount ;
stn−http : conta in s [

a stn−http : Mapping ;
stn−http : key " id " ;
stn−http :STNTerm stn : id ;

] ;
stn−http : conta in s [

a stn−http : Mapping ;
stn−http : key "name" ;
stn−http :STNTerm stn :name ;

] ;
stn−http : conta in s [

a stn−http : Mapping ;

8.1. Integrating Existing Platforms into the SWoT 131

stn−http : key "webs i te " ;
stn−http :STNTerm stn : swo tPro f i l e ;

] .

Listing 8.3: This mapping enables a social thing to extract RDF data from the JSON
payload in Listing 8.1. In this description, the website field, if any, is mapped to
the URL of the user’s SWoT profile (see Section 8.1.5.3 for details).

8.1.2 SoundCloud

SoundCloud5 is an online audio distribution platform. Among other features, Sound-
Cloud enables its registered users to record and upload audio content, or promote
and disseminate audio content created by other users. SoundCloud has over 250
million monthly active users.6

8.1.2.1 Platform overview

SoundCloud’s terms of use7 do not explicitly restrict registered users to people, and
in fact many organizations and companies use SoundCloud for hosting “podcasts”8.
The platform’s API supports most of the operations available to regular service
users, and therefore SoundCloud can be integrated into the SWoT as a Level 2 STN
platform (see Section 7.3).

The digital dimension

SoundCloud user accounts carry basic information about their holders (e.g., name,
description, city, website). Other digital artifacts defined by our digital STN model
(see Section 6.3.3) that can be found on SoundCloud are digital groups and com-
ments, that is messages with reference to a digital artifact. Domain-specific digital
artifacts include tracks and playlists. Registered users can interact with digital arti-
facts in various ways, for instance by joining or leaving groups, liking and reposting
tracks.

The social dimension

SoundCloud users can connect to other users via unidirectional relations, which can
be mapped to social relations (cf. Definition 6.1.13). Users can interact directly with
one another via private messages, or indirectly by means of comments attached to
tracks.

5http://www.soundcloud.com/
6http://techcrunch.com/2013/10/29/soundcloud-now-reaches-250-million-listeners-in-its-

quest-to-become-the-audio-platform-of-the-web/, Accessed: 28.11.2015.
7https://soundcloud.com/terms-of-use/, Accessed: 09.09.2015.
8Such as: https://soundcloud.com/product-hunt/, Accessed: 09.09.2015.

132 Chapter 8. Deploying a World-Wide Socio-technical Graph

The spatial dimension

SoundCloud does not currently feature digital artifacts with spatial characteristics.

The normative dimension

Interactions on SoundCloud are not generally restricted or sanctioned by any norms.
For an exception, when publishing a track, users can choose to disable comments
for that track.

8.1.2.2 API overview

The SoundCloud API is resource-oriented and provides endpoints for most digital
artifacts hosted by the platform, with one exception being private messages.9 Read
operations generally require only the identifier of the SoundCloud application using
the API, and thus we consider them to be publicly available. Creating or modi-
fying resources is generally performed on behalf of a registered user and requires
authorization via OAuth [Hardt 2012].

GET / use r s /169098327/ f o l l ow i n g s ?oauth_token=1−14... f 4 c7 HTTP/1 .1
Host : ap i . soundcloud . com

HTTP/1.1 200 OK
Content−Type : app l i c a t i o n / j son ; cha r s e t=UTF−8
ETag : "81344 f f2b737132ca84a63bfccbd8c7 f "
Content−Length : 569

[
{

" id " : 88985927 ,
" kind" : " user " ,
(. . .) ,
" d e s c r i p t i o n " : "Product Hunt Radio (PHR) i s f o r (. .) bes t new

products , every day . " ,
" c i t y " : "San Franc i sco " ,
(. . .) ,
" webs i te " : nu l l ,
" web s i t e_t i t l e " : nu l l ,
(. . .)

}
]

Listing 8.4: The SoundCloud user accounts followed by a user identified by
{user id} are retrieved via an HTTP GET request to /{user id}/followings. The
OAuth access token [Hardt 2012] is passed as a query parameter.

Listing 8.4 shows how theGetOutgoingRelations operation type (see Section 6.3.2)
can be implemented via the SoundCloud API. The HTTP request is similar with the

9https://developers.soundcloud.com/docs/api/reference/, Accessed: 09.09.2015.

8.1. Integrating Existing Platforms into the SWoT 133

one issued to the Facebook Graph API (cf. Listing 8.1), however on SoundCloud re-
sources are generally public and their representations encode their entire state. The
response returned by the platform encloses in its body a JSON array [Bray 2014]
of user account representations that follow a platform-specific user account model.
Unlike the Facebook Graph API, pagination has to be requested explicitly via a
query parameter when using the SoundCloud API. It is worth to note that digi-
tal artifacts on SoundCloud are identified by both platform-specific identifiers and
URIs, and the URIs are also included in their representations.

8.1.2.3 STN description document

The STN description document we have created for SoundCloud is similar to the one
created for Facebook and is available in Appendix A. SoundCloud’s STN platform
description includes most operations defined for reading and manipulating social
relations, user accounts, and groups (see Section 6.3).

8.1.3 Twitter

Twitter10 is an online social networking service that enables its users to send and
read messages of at most 140 characters, called “tweets”. As of September 30, 2015,
Twitter has 320 million monthly active users.11

8.1.3.1 Platform overview

Similar to Facebook and SoundCloud, Twitter is a service primarily designed for
people, however, Twitter defines its users explicitly as “anyone or anything”12. The
platform’s API supports most of the operations available to regular service users,
and therefore Twitter can be integrated into the SWoT as a Level 2 STN platform
(see Section 7.3).

The digital dimension

Twitter user accounts can provide basic information about their holders, such as
a short biography, their location and website. Things can hold and use Twitter
user accounts. Places may also have a digital counterpart on Twitter.13 Other
digital artifacts include private and public messages (i.e., tweets), and lists of users.
Registered users can favorite, retweet and reply to tweets, and they can create or
subscribe to user lists.

10http://www.twitter.com/
11https://about.twitter.com/company, Accessed: 28.11.2015.
12https://dev.twitter.com/overview/api/users, Accessed: 06.09.2015.
13https://dev.twitter.com/overview/api/places, Accessed: 09.09.2015.

134 Chapter 8. Deploying a World-Wide Socio-technical Graph

The social dimension

Twitter users can connect to other users via unidirectional relations, which can
be mapped to social relations (cf. Definition 6.1.13). Users can choose to have
“protected” accounts in order to approve who can follow their user accounts. Users
can interact directly with one another via direct messages, or indirectly via tweets.

The spatial dimension

Tweets can carry geospatial information by linking to the identifier of a location,
which may be represented as a digital place.

The normative dimension

Most information on Twitter is public, with the exception of users choosing protected
accounts. It is worth to note that the Twitter API provides endpoints for retrieving
the platform’s privacy policy and terms of services as unstructured text. Retrieving
the rate limit status of an application is also available via the API.

8.1.3.2 API overview

The Twitter Public API v1.1 supports most actions that are available to Twitter
users. Most resources on Twitter are public, however all HTTP requests have to be
authenticated such that they identify the requesting application. Any write opera-
tions are generally performed on behalf of a Twitter user and require authorization
via OAuth 1.0a [Hammer-Lahav 2010].

Listing 8.4 shows how theGetOutgoingRelations operation type (see Section 6.3.2)
can be implemented via Twitter’s API. Unlike the similar HTTP requests for Face-
book (cf. Listing 8.1) and SoundCloud (cf. Listing 8.4), the platform-specific identi-
fier is passed as a query parameter. User accounts, in particular, have two identifiers,
namely the id field, which holds an integer, and the screen name field, which holds
a string (cf. Listing 8.5). Representations enclosed in responses follow platform-
specific models and include only platform-specific identifiers of digital artifacts.

GET /1.1/ f r i e n d s / l i s t . j s on ? cur so r=−1&screen_name=tw i t t e r ap i HTTP/1 .1
Host : ap i . tw i t t e r . com

HTTP/1.1 200 OK
Content−Type : app l i c a t i o n / j son ; cha r s e t=UTF−8
ETag : " babd881296d1ab6c09115a9e0c699fa5ea2e803a "
Content−Length : 511

{
" prev ious_cursor " : 0 ,
" prev ious_cursor_str " : "0" ,
" next_cursor " : 1333504313713126852 ,
" u s e r s " : [

{

8.1. Integrating Existing Platforms into the SWoT 135

(. . .) ,
" id_str " : "657693" ,
(. . .) ,
" u r l " : " http :// a f r o g i n t h e v a l l e y . com/" ,
(. . .) ,
" fo l l owers_count " : 4993 ,
" protec ted " : f a l s e ,
(. . .) ,
" d e s c r i p t i o n " : "Developer Advocate at Twitter . (. . .) " ,
(. . .) ,
" f r i ends_count " : 2743 ,
" f o l l ow i ng " : true ,
" screen_name" : " f r o g i n t h e v a l l e y "

} ,
(. . .)

] ,
" next_cursor_str " : " 1333504313713126852"

}

Listing 8.5: The list of users followed by a Twitter account identified by {user id} is
retrieved via an HTTP GET to /1.1/friends.json?screen name={user id}. The
user account fields to be included in the response have to be requested explicitly as
query parameters. Access to most fields requires explicit user permission, such as
the website field.

8.1.3.3 STN platform description

The STN description document we have created for Twitter is similar to the one
created for Facebook and is available in Appendix A. The mapping for extracting
an RDF representation of a user account from a JSON-based representation of a
Twitter account was already presented in Section 7.1.4. Twitter’s STN platform
description includes most operations defined for reading and manipulating social
relations, user accounts, and messages (see Section 6.3).

8.1.4 Dweet.io

Dweet.io14 is a cloud-based IoT platform that enables things to publish and consume
data using self-assigned URIs.

8.1.4.1 Platform overview

Dweet.io enables things to publish data objects, also referred to as “dweets”, to a
self-assigned URI of the form https://dweet.io/dweet/for/{thing name}, where
thing name should be a unique identifier. Data may be transmitted via query pa-
rameters or in a JSON payload. At most 500 dweets are stored for a period of 24
hours for any Dweet.io URI. Things can openly access Dweet.io URIs both to pub-
lish and to consume data. Dweet.io also provides a payed feature (i.e., “locks”) that

14http://www.dweet.io/

136 Chapter 8. Deploying a World-Wide Socio-technical Graph

enables developers to restrict access to their URIs and receive rule-based notifica-
tions when dweets are being published, for instance when the JSON object contains
a field whose value is over a given threshold.

Things are first-class entities on Dweet.io and thus the platform can be inte-
grated into the SWoT as a Level 2 STN platform (see Section 7.3). It is worth to
note that Dweet.io does not feature explicit relations among things, however this is
not a requirement for Level 2 STN platforms.

8.1.4.2 API overview

Dweet.io provides a Humanized Web API15 and exposes endpoints for publishing
and retrieving dweets. Listing 8.6 shows an HTTP request for publishing a dweet
and the response returned by the API. Listing 8.7 shows an HTTP request for
retrieving the dweets published at a given URI.

POST /dweet/ f o r /example . org HTTP/1 .1
Host : dweet . i o
Content−Type : app l i c a t i o n / j son
Cache−Control : no−cache

{ " h e l l o " : "world" }

HTTP/1.1 200 OK
Content−Type : app l i c a t i o n / j son
Content−Length : 146

{
" t h i s " : " succeeded " ,
"by" : " dweeting " ,
" the " : "dweet" ,
"with" : {

" th ing " : "example . org " ,
" c rea ted " : "2015−09−07T09 : 2 1 : 5 9 . 7 6 4Z" ,
" content " : {

" h e l l o " : "world"
}

}
}

Listing 8.6: Publishing a dweet for a thing with the identifier example.org. A JSON
representation of the dweet to be published is included in the request body.

GET /get /dweets / f o r /example . org HTTP/1 .1
Host : dweet . i o

HTTP/1 .1 200 OK
Content−Type : app l i c a t i o n / j son
Content−Length : 148

15http://github.com/jheising/HAPI, Accessed: 07.09.2015.

8.1. Integrating Existing Platforms into the SWoT 137

{
" t h i s " : " succeeded " ,
"by" : " g e t t i n g " ,
" the " : "dweets " ,
"with" : [

{
" th ing " : "example . org " ,
" c rea ted " : "2015−09−07T09 : 2 1 : 5 9 . 7 6 4Z" ,
" content " : {

" h e l l o " : "world"
}

}
]

}

Listing 8.7: Retrieving available dweets published via the URI of a thing with the
identifier example.org.

8.1.4.3 STN description document

The STN description document we have created for Dweet.io is available in Ap-
pendix A. An extract from this document is shown in Listing 8.8, which includes
a description for retrieving the dweets posted by a thing. Listing 8.9 shows a de-
scription for a CreateUserAccount operation type (see Section 6.3.3.1), which can be
used for “creating” a user account on Dweet.io. Even though Dweet.io does not, in
fact, require registration, this operation can be simulated for consistency with the
digital STN model, which enables social things to interact with the platform using
known patterns and in-band information.

<#platform>
a stn : Platform ;
stn :name "Dweet . i o " ;
stn−http : baseURL <https : // dweet . io> ;
stn−ops : consumes stn−http :JSON ;
stn−ops : produces stn−http :JSON ;
stn−ops : supports <#createAccount> ,

<#postDweet> ,
<#getDweets> .

<#getDweets>
a stn−ops : GetUserAccountFeed ;
stn−ops : implementedAs [

a stn−http : STNRequest ;
http :methodName "GET" ;
http : requestURI "/ get /dweets / f o r / : accountId " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : UserAccountID ;
stn−http : key " : accountId " ;
stn−http : paramIn stn−http : Path ;

138 Chapter 8. Deploying a World-Wide Socio-technical Graph

] ;
stn−ops : hasOutput [

a stn−http : JSONArray ;
stn−http : key "with" ;
stn−http : arrayOf <#dweetJSONMapping> ;

] .

<#dweetJSONMapping>
a stn−http : Representat ion ;
stn−ops : mediaType stn−http :JSON ;
stn−ops : entityType stn : DataObject ;
stn−http : conta in s [

a stn−http : Mapping ;
stn−http : key " created " ;
stn−http :STNTerm stn : id ;

] ;
stn−http : conta in s [

a stn−http : Mapping ;
stn−http : key " th ing " ;
stn−http :STNTerm stn : createdBy ;

] ;
stn−http : conta in s [

a stn−http : Mapping ;
stn−http : key " content " ;
stn−http :STNTerm stn : data ;

] .

Listing 8.8: Extract from Dweet.io’s STN platform description. Retrieving the
dweets published by a social thing requires the platform-specific identifier of its “user
account” in order to retrieve its user account feed. The output of the operation is a
JSON array of data objects.

<#createAccount>
a stn−ops : CreateUserAccount ;
stn−ops : implementedAs [

a stn−http : STNRequest ;
http :methodName "GET" ;
http : requestURI "/dweet/ f o r / : agentURI" ;

] ;
stn−ops : hasRequiredInput [

a stn−http : AgentURI ;
stn−http : key " : agentURI" ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput [

a stn−http : JSONRepresentation ;
stn−ops : mediaType stn−http :JSON ;
stn−ops : entityType stn : UserAccount ;
stn−http : key "with" ;
stn−http : conta in s [

a stn−http : Mapping ;
stn−http : key " th ing " ;
stn−http :STNTerm stn : createdBy ;

8.1. Integrating Existing Platforms into the SWoT 139

] ;
] .

Listing 8.9: Operation description for the CreateUserAccount operation type (see
Section 6.3.3) as implemented by the Dweet.io platform.

8.1.5 Discussion

We analyze the degree to which the platforms presented in this section can be
interweaved into the SWoT by looking at three criteria:

• what are the operation types (see Section 6.3.2) that social things could use
on each platform;

• what are any major platform features that are not covered by the digital STN
model (see Section 6.3);

• openness and navigability, that is to what extent can social things access and
“crawl” the platforms, transition seamlessly to other platforms, or perform any
cross-platform operations.

8.1.5.1 Platform support for STN operations

A summary of the operation types supported by the platforms discussed in this
section is shown in Table 8.1.

Table 8.1: Types of operations supported by the APIs of Facebook, SoundCloud,
Twitter, and Dweet.io. We summarize operations types in terms of the Create, Read,
Update, Delete (CRUD) methods supported by each type of digital artifact.

Platform User
Accounts

Social Relations Groups Direct
Messages

Feeds
Type Access Type Access

Facebook R, U bidirectional R R R Home, User,
Group C, R, D

SoundCloud R unidirectional C, R, D R - - -
Twitter R, U unidirectional C, R, D - C, R, D Home, User C, R, D
Dweet.io C, R - - - - User C, R

Social things can perform read operations for all digital artifacts defined by our
digital STN model and supported by each platform. Support for read operations has
high utility particularly in the case of Facebook, which has a staggering 1.55 billion
monthly active users (as of September 30, 2015)16, Twitter, which has 320 million
monthly active users (as of September 30, 2015)17, and SoundCloud, which has over
250 million monthly active users18. On these platforms, social things can retrieve

16http://newsroom.fb.com/company-info/, Accessed: 28.11.2015.
17https://about.twitter.com/company, Accessed: 28.11.2015.
18http://techcrunch.com/2013/10/29/soundcloud-now-reaches-250-million-listeners-in-its-

quest-to-become-the-audio-platform-of-the-web/, Accessed: 07.09.2015.

140 Chapter 8. Deploying a World-Wide Socio-technical Graph

representations of user accounts, crawl social graphs, and access user-generated con-
tent.

Support for write operations is somewhat more limited on Facebook: social
things would only be able to post and delete public messages on behalf of a human
user. On SoundCloud and Twitter, social things would be able to perform most
of the operations that are available to human users (cf. Table 8.1). They can,
for instance, create and delete social relations. On Dweet.io, social things are able
to create user accounts, which is a simulated operation (see Section 8.1.4), and to
post/read messages to/from user account feeds.

8.1.5.2 Platform features not covered by STN operations

The Facebook Graph API provides access to a rich amount of information about
its users, such as movies and books they like. SoundCloud also provides access to
useful domain-specific features, such as audio streaming. The digital STN model (see
Section 6.3) is a general model whose purpose is to provide an extensible backbone
for the SWoT. Social things would require domain-specific extensions in order to
access and use these features. Similarly, Facebook, Twitter and SoundCloud provide
features for promoting or disseminating to social media items (e.g., like, share,
repost, retweet). An extension that would enable agents to interact with social media
is discussed as future work in Section 10.3. Another feature, which is important for
practical reasons, that we leave as future work is pagination.

8.1.5.3 Openness and navigability

The Facebook Graph API v2.4 and the SoundCloud API use OAuth 2.0 [Hardt 2012],
and the Twitter Public API v1.1 uses OAuth 1.0a [Hammer-Lahav 2010] to autho-
rize HTTP requests. This implies that in order to access these platforms social
things would have to be configured against each platform, which hinders openness
and navigability. If able to access the platforms, social things would then gener-
ally be able to crawl their social graphs. On Facebook, however, the possible crawl
depth and the information extracted in the process would depend heavily on the
permissions granted to social things and the various privacy settings of Facebook
users. On all these platforms, crawling, as well as other operations, would also be
subject to rate limiting policies. On Twitter, social things would be able to retrieve
their rate limits dynamically via the platform’s API, given they support an exten-
sion that enables them to do so (see Section 10.3). On SoundCloud, rate limits are
out-of-band information provided in the API documentation. On Facebook, rate
limits are not currently presented explicitly to developers.

Access to locked Dweet.io URIs is currently performed by means of fixed keys
that social things would have to possess.19 Unlocked Dweet.io URIs are accessed
openly. Dweet.io does not currently feature explicit relations between things, and
thus it is not possible to crawl the platform to discover other social things. In

19https://dweet.io/locks, Accessed: 28.11.2015.

8.2. ThingsNet: a Level 5 STN Platform 141

Section 8.3, we show how we can address this limitation by integrating Dweet.io in
the world-wide STG and leveraging the social graphs of other platforms.

Social things can transition seamlessly to any of these platforms from SWoT
profiles (see Section 7.1.2) or STN platforms that support cross-platform relations.
Transitioning from any of these platforms to other platforms is not straightforward,
however, various conventions can help to achieve this purpose. For instance, users
of social platforms could set their websites, a field used by most social platforms,
to the URLs of their SWoT profiles. It is worth to note that such conventions do not
have to be hard-coded into social things, they can be included in the mappings used
to extract RDF representations of user accounts via the stn:swotProfile property
(see Listing 8.3).

8.1.5.4 Conclusions

In summary, social things can use STN platform descriptions (see Section 7.1.3)
to crawl Facebook, SoundCloud, and Twitter. On Facebook and SoundCloud they
can also retrieve representations of groups and group members, which may help
during crawling. Facebook and Twitter provide various feeds that social things could
consume. Domain-specific extension can further enhance the information extracted
from these platforms.

Based on our integration strategy in (see Section 7.3), Facebook can be inte-
grated into the SWoT as a Level 1 STN platform, which means that social things
are not first-class entities, however, they can use the platform as a data source.
Twitter, SoundCloud, and Dweet.io can be integrated into the SWoT as Level 2
STN platforms. On Twitter and SoundCloud, social things can hold user accounts,
build and maintain social graphs. On Twitter, they can also interact with people via
direct messages and tweets. Social things can use Dweet.io to publish and consume
JSON data objects. Given that Dweet.io does not provide a graph of relations that
could be crawled, social things have to be provided with the URIs of other social
things in order to consume any data they may publish.

The platforms presented in this section, and other similar platforms, can be
interweaved into the SWoT by means of STN platform descriptions, SWoT profiles
and STN platforms that support cross-platform relations. We present one such
platform in the following section.

8.2 ThingsNet: a Level 5 STN Platform

In the previous section, we discussed the integration of several existing platforms
into the SWoT as either Level 1 or Level 2 STN platforms. In this section, we
present our implementation of a Level 5 STN platform, which we call ThingsNet.

ThingsNet enables agents to create and manage social relations (see Defini-
tion 6.1.13) with other agents in the SWoT, and to interact with one another by
means of messages. ThingsNet is a Level 5 STN platform (see Section 7.3) because
it allows social things to participate in the STN as first-class citizens, it produces

142 Chapter 8. Deploying a World-Wide Socio-technical Graph

STN-compliant representations of digital artifacts, it provides a uniform API, and
it is an open platform. ThingsNet relies on WebID [Sambra 2015a] to uniquely
identify agents in the SWoT, and it supports cross-platform participation (i) by
allowing social relations to agents registered on other STN platforms and (ii) by
allowing identifiable agents registered on other STN platforms to send messages to
ThingsNet users.

8.2.1 Design and implementation

In a rough description, ThingsNet is essentially a repository of digital artifacts.
All digital artifacts are identified by URIs and their states are fully represented in
RDF using the STN ontology (see Section 7.1.1). The implementation is written in
Scala [Odersky 2004] using the Play Web framework20 and banana-rdf21.

Figure 8.1: Architectural elements of the ThingsNet platform. The states of digital
artifacts are fully represented in RDF and stored as named graphs. Representations
of digital artifacts are retrieved via an HTTP-based interface. Some requests (e.g.,
retrieving the messages received by a user) require authentication via the WebID
authentication protocol.

The architectural elements of ThingsNet are depicted in Figure 8.1. Our proto-
type implementation simulates the WebID authentication protocol [Sambra 2015a]
to uniquely identify requesting agents, and uses Apache Jena TDB22 to store and
query RDF representations of digital artifacts. The platform has a modular design
such that its components can be easily substituted or complemented (cf. Figure 8.1).

ThingsNet currently features two types of digital artifacts, that is user accounts
and messages (cf. Figure 8.1). User accounts carry basic information about their
holders, such as their WebIDs, names and descriptions to be displayed within the
STN. In addition, user accounts held by social things include the WebIDs of the

20https://www.playframework.com/, Accessed: 28.11.2015.
21https://github.com/banana-rdf/banana-rdf/, Accessed: 28.11.2015.
22https://jena.apache.org/documentation/tdb/index.html, Accessed: 28.11.2015.

8.2. ThingsNet: a Level 5 STN Platform 143

social things’ owners. Messages can have one or more recipients, and can contain a
subject and a body.

Our current implementation does not feature a front-end for human users. Never-
theless, people can access ThingsNet by using any SWoT-compliant software client,
such as the STN browser we present in Section 8.3.2.

8.2.2 API overview

ThingsNet provides an HTTP-based hypermedia API that conforms to the unifor-
mity constraints in Section 7.2.1: digital artifacts are identified via URIs, clients
interact with the API by exchanging representations of digital artifacts, representa-
tions are produced using the Turtle RDF serialization format [Prud’hommeaux 2014]
and the STN ontology, and interaction with the API is driven by hypermedia.

ThingsNet uses standard HTTP and provides an STN description document
that encodes all platform-specific knowledge required to interface with the plat-
form. The document is published via the /.well-known/stn URI and identifies
the platform via the /.well-known/stn#platform hash URI (see Section 7.3). All
representations of digital artifacts produced by ThingsNet include its platform URI
via a hosting relation (see Definition 6.1.24). ThingsNet’s complete STN description
document is available in Appendix A.

For illustrative purposes, the description of the CreateUserAccount operation
type (see Section 6.3.3) is shown in Listing 8.10. Following our formal definition
in Section 6.3.3, the performing agent is identified via the WebID authentication
protocol and the platform parameter is implicit. In addition, ThingsNet requires a
number of other parameters (cf. Listing 8.10): the social thing’s class23, which may
be the class of social things denoted by stn:SocialThing or any of its subclasses,
an URI identifying the social thing’s owner, and a name to be displayed within the
STN. Optionally, a description may also be provided. This operation type returns
a Turtle representation of a user account.

@pref ix format : <http ://www.w3 . org /ns/ formats/> .

<#platform>
a stn : STNPlatform ;
stn :name "ThingsNet" ;
stn−http : baseURL <http :// l o c a l h o s t :9000> ;
stn−http : supportsAuth stn−http :WebID ;
stn−http : consumes format : Turt le ;
stn−http : produces format : Turt le ;
stn−ops : supports <#createAccount> ,

<#getAccount> ,
. . .
<#deleteMessage> .

<#createAccount>
a stn−ops : CreateUserAccount ;

23Our prototype implementation assumes that only social things register via ThingsNet’s API.

144 Chapter 8. Deploying a World-Wide Socio-technical Graph

stn−ops : implementedAs [
a stn−http : AuthSTNRequest ;
http :methodName "POST" ;
http : requestURI "/ us e r s /" ;

] ;
stn−ops : hasRequiredInput [a stn−ops : Soc ia lTh ingClas s] ;
stn−ops : hasRequiredInput [a stn−ops : Owner] ;
stn−ops : hasRequiredInput [a stn−ops : DisplayedName] ;
stn−ops : hasInput [a stn−ops : Des c r ip t i on] ;
stn−ops : hasOutput [

a stn−http : Representat ion ;
stn−ops : mediaType format : Turt le ;
stn−ops : entityType stn : UserAccount ;

] .

Listing 8.10: An extract from ThingsNet’s STN description document. The
document includes general information about the platform (e.g., name) and its
API (e.g., supported authentication protocol and media types), and descriptions
for each of the operation types supported by the platform. This listing shows the
operation description for the CreateUserAccount operation type as implemented by
the ThingsNet platform.

Following the operation description in Listing 8.10, David’s social TV in Sec-
tion 5.1.1 can thus register to ThingsNet using a WebID provided by its manufac-
turer, the WebID of its owner (i.e., David), a pre-configured social thing class, and a
user-configured name. We report on our implementation of this application scenario
in Section 9.2. The social TV interprets the operation description to construct a
Turtle representation of the user account to be created, which includes all the re-
quired parameters, and issues an HTTP POST request to the /users/ endpoint, which
is shown in Listing 8.11. ThingsNet responds with a 201 Created status code. The
response payload contains a Turtle representation of the created user account, which
includes the user account’s URI generated by the platform and a hosting relation
(cf. Listing 8.10).

POST / use r s HTTP/1 .1
Host : l o c a l h o s t :9000
Content−Type : t ex t / t u r t l e
X−WebID: http :// api . mymanufacturer . com/ tvs /874 . . .260# thing

@pref ix : <http :// pur l . org / stn / core#> .
@pref ix ex : <http ://www. example . com#> .

<> a : UserAccount ;
:name "David ’ s S o c i a l TV" ;
: d e s c r i p t i o n "A TV with a tw i s t ! " ;
: heldBy <http :// api . mymanufacturer . com/ tvs /874 . . .260# thing> .

<http :// api . mymanufacturer . com/ tvs /874 . . .260# thing>
a ex : SocialTV ;
: ownedBy ex : David .

8.2. ThingsNet: a Level 5 STN Platform 145

HTTP/1 .1 201 Created
Content−Type : t ex t / t u r t l e

@pref ix stn : <http :// pur l . org / stn / core#> .
@pref ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .
@pref ix ex : <http ://www. example . com#> .

<http :// l o c a l h o s t :9000/ us e r s / f8d . . . a16>
a stn : UserAccount ;
stn : d e s c r i p t i o n

"A TV with a tw i s t ! " ;
s tn : heldBy

<http :// api . mymanufacturer . com/ tvs /874 . . .260# thing> ;
stn : hostedBy

<http :// l o c a l h o s t : 9 000/ . wel l−known/ stn#platform> ;
stn :name

"David ’ s S o c i a l TV" .

<http :// api . mymanufacturer . com/ tvs /874 . . .260# thing>
a ex : SocialTV ;
stn : ownedBy ex : David .

Listing 8.11: A request-response interaction for creating a user account on
ThingsNet. The request payload includes a Turtle representation of the user account
to be created. The response payload includes a Turtle representation of the created
user account, which contains the platform-generated URI of the user account and a
hosting relation.

Our prototype implementation does not, in fact, implement the WebID authenti-
cation protocol [Sambra 2015a], however, it simulates it by passing the WebID of the
requesting agent in a custom HTTP header field, that is X-WebID (cf. Listing 8.11).
The prototype implementation returns a 401 Unauthorized response whenever au-
thentication data is missing or the requesting agent does not have access to perform
the intended operation, such as retrieving a registered user’s messages.

8.2.3 Discussion

By conforming to all the requirements of our five-level integration strategy in Sec-
tion 7.3, the ThingsNet platform becomes a core component of the SWoT infrastruc-
ture, which in turn could increases its audience in terms of clients that can consume
its services. In the next section, we report on using our prototype implementation
to “glue together” the deployed STG.

Per our suggestion in Section 7.2.1, the Linked Data Platform (LDP) [Speicher 2015]
could provide a standard-compliant foundation for interaction between SWoT com-
ponents. Our design and implementation choices for the development of ThingsNet
were, at many times, guided by the LDP. Our prototype implementation, however,
does not fully conform to the normative requirements of the LDP. Furthermore,
some of the SWoT-specific features provided by ThingsNet are implemented in a

146 Chapter 8. Deploying a World-Wide Socio-technical Graph

manner that is not in-line with the interaction patterns promoted by the LDP. For
instance, our prototype implements the GetOugoingRelations operation type (see
Section 6.3.2) via an HTTP GET to the /connections/out endpoint with a query pa-
rameter that specifies the URI of the targeted user account. The advantage of this
approach is that it simplifies development and testing. A disadvantage, however, is
that it pollutes the URI space in the SWoT.

Outgoing relations are, in fact, a subset of the set of triples that describes a
user account (cf. Definition 7.1.3). An approach more in-line with the interaction
patterns promoted by the LDP would be to request the representation of the target
user account, however, by also providing to the STN platform a SWoT-specific hint
about the desired representation (i.e., only outgoing relations) via the HTTP Prefer
header field [Snell 2014]. We leave it as future work to define a linked data protocol
for STNs (see Chapter 10.3).

Our experience with the development of ThingsNet confirms, unsurprisingly,
that RDF provides a data model well-suited for representing the world-wide STG.
Named graphs allow for a natural partitioning of the STG across digital artifacts,
which can then be easily merged together.

8.3 Deployment of a World-Wide Socio-technical Graph

In this section, we validate our approach by creating a SWoT environment that is
driven by hypermedia and sustained by heterogeneous platforms. To this purpose, we
use the platforms discussed in Section 8.1 and ThingsNet (see Section 8.2) to deploy
a SWoT environment for the scenario introduced in Section 5.1.1 (“The Social TV”).
We present our deployment scenario in Section 8.3.1. In Section 8.3.2, we present
a Web application that people can use to navigate and participate into the SWoT,
which we call an STN browser. In Section 8.3.3, we illustrate how a user can use
the STN browser to navigate and manipulate the deployed STG, starting only from
an entry URI and regardless of the underlying heterogeneous platforms.

8.3.1 Deployment scenario

Our deployment scenario is depicted in Figure 8.2 (cf. scenario in Section 5.1.1). We
create a distributed STG using Facebook, Twitter, SoundCloud, and ThingsNet. We
use five instances of ThingsNet, which run locally on various ports, to implement
the STN Boxes of David and his friends. The three social platforms are closed,
whereas the STN Boxes are open platforms (cf. Figure 8.2). David and his friends
own social TVs, which use Dweet.io to publish data, such as movie ratings collected
from their owners (cf. Figure 8.2).

As illustrated in Figure 8.2, David has a single social relation (see Defini-
tion 6.1.13) in his home STN, via his user account, to a friend on a different STN
Box. David, however, is also registered on each of the three social platforms, and
on each platform he is connected, in a platform-specific manner, to a friend that
also has an STN Box and owns a social TV. The social graphs we use on Facebook,

8.3. Deployment of a World-Wide Socio-technical Graph 147

Figure 8.2: Deployment scenario: David owns an STN Box, which hosts his home
STN. In addition, David holds multiple user accounts on various other platforms.
Some of David’s friends on those platforms also own STN Boxes. The social TVs
use Dweet.io to publish data.

Twitter and SoundCloud have been created manually via multiple development user
accounts. Facebook provides developers with a harness to test their applications via
test users. Nevertheless, the user accounts of test users function similarly to regular
user accounts (e.g., they provide the same fields for personal information and require
the same permissions to access them). For Twitter and SoundCloud, we use regular
user accounts.

David, his friends, and his friends’ social TVs have SWoT profiles (see Sec-
tion 7.1.2) that are hosted by their STN Boxes and include their WebID pro-
files [Sambra 2015a] as well. We assume these SWoT profiles have been created
when the agents registered to the STN Boxes. We assume David’s social TV has a
SWoT profile hosted by its manufacturer, which includes its WebID profile as well.
David and his friends advertise the URLs of their SWoT profiles as their personal
websites on all the social platforms they use (see discussion in Section 8.1.5.3).

8.3.2 A browser for STNs

We have developed a Web application, which we call an STN browser, that enables
people to navigate and participate into the SWoT. The STN browser acts as a
uniform user interface for heterogeneous STN platforms: it retrieves and interprets
STN description documents (see Section 7.1.3), based on which it displays controls
that can be used to perform operations (see Section 6.3.2) supported by the described
platforms.

The user interface of the STN browser is shown in Figure 8.3. The STN browser
has a number of pre-configured parameters, which are displayed in the top left
corner, such as its WebID, the WebID of its owner (e.g., to enact social things for
testing purposes), a name or a description to be displayed within an STN. The panel
in the middle left of the user interface provides controls that allow a user to load an
STN description document from a given location. When a new platform description
is loaded, the described platform is added to the list of available STN platforms and

148 Chapter 8. Deploying a World-Wide Socio-technical Graph

Figure 8.3: The STN browser displays the result of performing an agent operation
in two areas: the area on the left shows the raw body of the response returned by
the origin server, and the one on the right shows the semantic information it can
extract from that response. This image shows the result of posting a status update
on Facebook.

the operations it supports are added to an associated drop-down list (cf. Figure 8.3).
When a user selects an operation to be performed on one of the available STN

platforms, the controls required to perform the operation are dynamically displayed
in the control panel to the right. This panel includes a number of text fields that
describe the operation and an input field for each of the parameters that are re-
quired to perform the operation (cf. Figure 8.3). The STN browser auto-completes
any parameters that are pre-configured, if any, by matching required parameters
against its list of pre-configured parameters based on their declared types (see STN-
Operations in Section 7.1.1.2). In Figure 8.3, for instance, the STN browser displays
controls for posting a public message on Facebook. The operation class is denoted
by stn-ops:PostPublicMessage and it has a required input parameter, whose type
is denoted by stn-ops:Description.

The output of an operation is displayed in the bottom panel of the user interface
in two areas (cf. Figure 8.3). The area on the left displays the raw body of the HTTP
response received from an STN platform. The area on the right displays the RDF
data that the STN browser is able to extract from that response. In Figure 8.3,
the area on the left displays the raw JSON payload received from the Facebook
platform after posting a public message (i.e., a Facebook status), which returns only
a platform-specific identifier of the created message. The STN browser extracts the
identifier from this representation and displays a Turtle representation of the created
message in the area on the right. A user can use this platform-specific identifier to
perform an stn-ops:GetMessage operation and retrieve a complete representation
of the message, for instance one that would also include the message body.

Like ThingsNet, the STN browser is written in Scala using the Play Web frame-

8.3. Deployment of a World-Wide Socio-technical Graph 149

work and banana-rdf. The front-end is written in HTML and JavaScript, and uses
Asynchronous JavaScript and XML (AJAX) to interface with the application’s back-
end and display information in a dynamic manner. The back-end provides a server-
side proxy to construct and perform all necessary HTTP requests. The requests
are built automatically as specified by the platform descriptions. It is worth to
note, however, that all social platforms use OAuth-based authorization for HTTP
requests, which implies that the requests have to be configured for authorization
against each social platform (see Section 1.8 on interoperability of RFC 6749). We
use Scribe24, an OAuth library, to sign HTTP requests for Facebook, SoundCloud
and Twitter. We use unlocked URIs for Dweet.io (see Section 8.1.4) and we simu-
late the WebID authentication protocol when interfacing with ThingsNet nodes (see
Section 8.2.2). Our current implementation of the STN browser supports Turtle and
JSON media types.

8.3.3 Discussion: browsing the Social Web of Things

The STN description documents of the various platforms in our deployment scenario
are used to achieve a uniform interface (see Section 7.2) based on our digital STN
model (see Section 6.3) and using the STN ontology (see Section 7.1.1). This uniform
interface decouples the STN browser from the heterogeneous platforms underlying
the deployed STG. The interweaving of the otherwise isolated STGs of each platform
is then achieved via cross-platform relations, SWoT profiles, and hosting relations
(per our discussion in Section 7.2.1.4). These elements enable the navigation of the
deployed STG across its underlying platforms, given only an entry point in the form
of a URI. We illustrate this behavior in what follows.

8.3.3.1 Hypermedia-driven interaction

Returning to our scenario depicted in Figure 8.2, we choose our entry point into
the SWoT to be David’s SWoT profile, which is retrieved from his STN Box. In
our deployment scenario, David’s SWoT profile is part of the description of David’s
user account on his STN Box, which is shown in Listing 8.12, and we assume it was
generated when David registered to the STN Box. The SWoT profile, however, could
also be hosted as a standalone document, similar to a FOAF profile [Brickley 2014].
The STN Box is implemented as an instance of ThingsNet that runs locally on port
9000 (cf. Listing 8.12).

David’s SWoT profile contains descriptions of all user accounts held by David
on the platforms he uses in this scenario (cf. Listing 8.12). These descriptions
include hosting relations, denoted via stn:hostedBy properties, that point to the
heterogeneous platforms underlying the STG (cf. Listing 8.12). In our scenario
implementation, the STN description documents for Facebook, Twitter and Sound-
Cloud are published by David’s STN Box (cf. Listing 8.12). The user account

24https://github.com/fernandezpablo85/scribe-java, Accessed: 28.11.2015.. As a technical detail,
it is worth to note that Scribe is a Java library. Scala, however, runs on the Java virtual machine
(JVM), and invoking Java code from Scala is performed seamlessly.

150 Chapter 8. Deploying a World-Wide Socio-technical Graph

held by David on his STN Box, which is a hypermedia-driven platform, is uniquely
identified via a URI (cf. Listing 8.12). Dereferencing this URI retrieves the Turtle
representation in Listing 8.12.

<http :// l o c a l h o s t :9000/ us e r s / e75 . . . 8 f 3#David>
a stn : Person ;
stn :name "David" ;
stn : ho lds <http :// l o c a l h o s t :9000/ us e r s / e75 . . . 8 f3> ;
stn : ho lds [

a stn : UserAccount ;
stn : hostedBy <http :// l o c a l h o s t :9000/ a s s e t s / s tn spec s / tw i t t e r . t t l

#platform> ;
stn : id " swotdev" ;

] ;
s tn : ho lds [

a stn : UserAccount ;
stn : hostedBy <http :// l o c a l h o s t :9000/ a s s e t s / s tn spec s / facebook .

t t l#platform> ;
stn : id "1550387481863557" ;

] ;
s tn : ho lds [

a stn : UserAccount ;
stn : hostedBy <http :// l o c a l h o s t :9000/ a s s e t s / s tn spec s / soundcloud#

platform> ;
stn : id " swotdev" ;

] ;
c e r t : key [a c e r t : RSAPublicKey ;

c e r t : modulus "cb24ed . . . 1 3 9 1 a1"^^xsd : hexBinary ;
c e r t : exponent 65537 ;

] .

<http :// l o c a l h o s t :9000/ us e r s / e75 . . . 8 f3>
a stn : UserAccount ;
stn : d e s c r i p t i o n ("Doe . David Doe . ") ;
s tn : heldBy <http :// l o c a l h o s t :9000/ us e r s / e75 . . . 8 f 3#David> ;
stn : hostedBy <http :// l o c a l h o s t : 9 000/ . wel l−known/ stn#platform> ;
stn :name "David Doe" ;
stn : connectedTo <http :// l o c a l h o s t :9001/ us e r s / c2e . . . f16> .

Listing 8.12: A representation of David’s user account on his STN Box, which
includes David’s SWoT profile. The SWoT profile identifies David as a person,
and describes the user accounts he holds on his STN Box, Twitter, Facebook and
SoundCloud. The SWoT profile includes David’s public key, which could be used,
for instance, in the WebID authentication protocol [Sambra 2015a].

Having discovered the URIs of the social platforms in our deployments scenario
via David’s SWoT profile, we can now use the STN browser to load each STN
description document and perform operations, for instance to retrieve complete rep-
resentations of David’s user accounts by means of a GetUserAccount operation or
to retrieve the outgoing social relations established via his user accounts by means
of a GetOutgoingRelations operation (see Section 6.3.3), which is used to further
navigate the STG. In Section 8.1, we presented platform-specific descriptions and

8.3. Deployment of a World-Wide Socio-technical Graph 151

implementations for the GetOutgoingRelations operation type for each of the social
platforms in our deployment scenario.

Operations that can be used via the STN browser to manipulate the deployed
STG include creating and deleting social relations, creating and deleting messages.
Some social platforms support other types of operations as well (cf. Table 8.1).

8.3.3.2 Conclusions

The user can follow steps similar to the ones discussed so far to continue navigating
the deployed STG. Figure 8.4 depicts the client’s view of this STG. From a SWoT
client’s perspective, the STG is uniform and can be manipulated in a uniform fash-
ion, even though the STG is, in fact, distributed across heterogeneous platforms
using platform-specific data models and APIs.

Figure 8.4: An overview of the semantic representation that the STN browser is
able to build for the social graphs deployed in our scenario, effectively creating a
distributed socio-technical graph.

We say that the deployed STG is world-wide because the client is agnostic to
the underlying platforms. It is also worth to emphasize that we have successfully
integrated into the deployed STG two of the largest social platforms available at
the moment of writing this dissertation, that is Facebook (see Section 8.1.1) and
Twitter (see Section 8.1.3).

We say that the deployed SWoT environment is hypermedia-driven because a
SWoT client, such as our STN browser, can navigate and manipulate the world-
wide STG starting from a single entry point, such as the URI of David’s SWoT
profile.

Dweet.io does not feature relations among its users (see Section 8.1.4). An impor-
tant consequence of integrating this platform into the deployed SWoT environment
is that the social TVs’ data streams published via the platform are now discoverable.
By crawling the STG, the user can reach the Dweet.io user accounts at the edge
of the deployed STG. In Section 9.2, in which we discuss our implementation of
the “The Social TV” scenario in Section 5.1.1, David’s social TV implements this
behavior to aggregate movie ratings published by the social TVs of David’s friends.
Without this enabled discoverability, David’s social TV would have to hard-code

152 Chapter 8. Deploying a World-Wide Socio-technical Graph

references to the Dweet.io user accounts.
The instances of ThingsNet deployed in this scenario play an essential role: they

enhance hypermedia-interaction via cross-platform relations. The SWoT profiles
of the agents involved in this scenario could have also been hosted as standalone
documents on regular Web servers. Nevertheless, ThingsNet offers a preview of
what the SWoT could look like if it is to be sustained by Level 5 STN platforms (see
Section 7.3). The characteristic that we find most important is openness: David’s
social TV, for instance, can use ThingsNet to store relations to social TVs on other
STN Boxes (see Section 9.2), or it can send direct messages to social TVs on other
STN Boxes.

8.4 Summary

In this chapter, we presented the current validations of our approach to create a
world-wide socio-technical graph (STG) that is sustained by heterogeneous plat-
forms and that machines can interpret and manipulate in a reliable fashion. The
world-wide STG represents the backbone of our vision for a Social Web of Things
(SWoT). Our approach enabled the successful integration of several well-known so-
cial platforms in the deployed STG, namely Facebook, SoundCloud, and Twitter,
and of a WoT platform, that is Dweet.io. By integrating all these platforms into
the SWoT, we have demonstrated that our approach copes well with platform het-
erogeneity.

In Section 8.1, we discussed the integration of the above-mentioned platforms
into the SWoT. In Section 8.2, we presented ThingsNet, our implementation of a
Level 5 STN platform (see Section 7.3). In Section 8.3, we reported on our experience
with deploying an STG for the scenario introduced in Section 5.1.1 (“The Social TV”)
across the platforms discussed in this chapter, and we presented a Web application
(a.k.a. the STN browser) that is able to interpret STN description documents in
order to interface with heterogeneous STN platforms. The STN browser validates
our approach of creating a hypermedia-driven environment for the SWoT: starting
with the URL of a SWoT profile (see Section 7.1.2) as an entry point into the
SWoT, we are able to transcend platform boundaries to navigate and manipulate
the world-wide STG in a uniform fashion.

Chapter 9

Bringing Rational Agents to the
Social Web of Things

Contents
9.1 A Multi-agent Middleware for the Social Web of Things . . 154

9.1.1 Programming social things as BDI agents 155

9.1.2 Multi-agent environments for the SWoT 156

9.2 Use Case: Crawling the Social Web of Things 160

9.2.1 Deployment Scenario . 160

9.2.2 Agent logic . 161

9.2.3 Lessons learned . 162

9.3 Use Case: Flexible Interaction among Social Things 163

9.3.1 Deployment scenario . 164

9.3.2 Agent logic . 165

9.3.3 Lessons learned . 168

9.4 Use Case: Remote Interaction with Social Things 169

9.4.1 Deployment Scenario . 169

9.4.2 Agent logic . 170

9.4.3 Lessons learned . 170

9.5 Use Case: Regulation in the Social Web of Things 171

9.5.1 Organisational specification 171

9.5.2 Agent logic . 172

9.5.3 Lessons learned . 172

9.6 Summary . 173

In the previous chapter, we validated our approach to create a hypermedia-
driven environment sustained by heterogeneous platforms. Per our vision presented
in Chapter 5, two important characteristics of this environment are that it supports
discoverability and flexible interaction in the SWoT. In this chapter, we demonstrate
these characteristics by implementing the scenarios presented in Section 5.1. A
secondary objective of this chapter is to demonstrate that the abstraction layers
introduced by our SWoT architecture (see Section 5.3) enable developers and users
to effectively cope with the envisioned complexity of the overall ecosystem.

154 Chapter 9. Bringing Rational Agents to the Social Web of Things

This chapter is structured as follows. In Section 9.1, we introduce a multi-agent
middleware for the SWoT that aims at facilitating the development of social things
(see Definition 6.1.7) as rational agents, that is to say software agents that can au-
tonomously make decisions and act upon them. We use this middleware throughout
the rest of this chapter to implement the scenarios presented in Section 5.1. In
Section 9.2, we implement the “Social TV” scenario (see Section 5.1.1) to showcase
how STNs can enhance discoverability in the IoT. In Section 9.3, we implement
the “The Wake-up Call” scenario (see Section 5.1.2) to showcase how STNs can en-
hance flexible interaction in the IoT. In Section 9.4, we implement the “The Laundry
Room” scenario (see Section 5.1.3) to showcase how STNs can serve as a uniform
mechanisms for remote interaction with heterogeneous things. In Section 9.5, we im-
plement the “A Welcoming Home” scenario (see Section 5.1.4) to showcase the use
of regulation mechanisms for manipulating relations in the SWoT and coordinating
the behavior of social things towards achieving common goals.

9.1 A Multi-agent Middleware for the Social Web of
Things

In this section, we introduce the elements required to understand our scenario im-
plementations in the rest of this chapter, and we present the details of how the
agents we implement are able to participate into the SWoT such that throughout
the rest of this chapter we can focus on programming the agent behavior instead.

We developed our multi-agent middleware for the SWoT using the JaCaMo
platform [Boissier 2013]. We have chosen to use JaCaMo because it integrates three
multi-agent platforms that provide all the elements needed to implement the appli-
cations presented in this chapter, that is to say:1 Jason [Bordini 2007] for program-
ming BDI agents, CArtAgO [Ricci 2009] for programming multi-agent environments
using the Agents & Artifacts meta-model [Omicini 2008], and Moise [Hubner 2007]
for programming multi-agent organisations.

Our middleware provides developers with implementations for the social artifacts
defined by our digital STN model (see Section 6.3.3). The middleware handles the
heavy lifting of interfacing with heterogeneous STN platforms and allows developers
to focus on the design and implementation of SWoT applications in terms of the
higher-level abstractions of agents, artifacts and organisations. Developers can also
extend the middleware with new types of artifacts.

An overview of a typical JaCaMo application that can be developed using this
middleware is depicted in Figure 9.1. Developers program social things as ratio-
nal agents situated in working environments that span across the physical-digital
space. A working environment is composed of a dynamic set of artifacts organized in
workspaces (see [Ricci 2007b] for more details). As illustrated in Figure 9.1, agents
perceive changes in their environment by observing artifacts, and act on their en-

1A more detailed discussion on the various modeling dimensions for multi-agent systems is
available in Section 4.1.2

9.1. A Multi-agent Middleware for the Social Web of Things 155

Figure 9.1: A multi-agent SWoT application. The application runs on an STN
client and is composed of three rational agents and two artifacts. Two of the agents
observe and act on a non-persistent artifact, while the third observes and acts on
an artifact persisted on an STN server.

vironment by performing operations on artifacts. Social artifacts are persisted on
STN platforms. Other artifacts used in our scenario implementations in this chapter
are non-persistent and exist only at run-time.

9.1.1 Programming social things as BDI agents

In the applications presented in this chapter, we program social things as belief-
desire-intention (BDI) agents [Bratman 1988]. Jason provides a customizable BDI
agent architecture and a language for programming the agent’s behavior2. In what
follows, we discuss only elements of the Jason agent programming language that are
necessary to understand the rest of this chapter. Thorough discussions on program-
ming BDI agents using Jason are available in [Bordini 2006, Bordini 2007].

The basic language constructs provided by Jason to program an agent’s behavior
are:

• beliefs, which represent information an agent holds about the world. Beliefs
are not necessarily true, they may be out of date or inaccurate.

• goals, which represent states of affairs an agent wishes to bring to the world.

• plans, which represent courses of actions an agent expects would achieve spe-
cific goals.

The main benefit of programming social things using Jason, or other platforms
for programming BDI agents, is that developers are generally concerned only with
programming the behavior of social things at a very high level of abstraction in terms
of beliefs, goals, and plans. Furthermore, given the intuitive nature of these concepts,
we suggest that easy-to-use development tools3 would enable tech savvy users to

2The language provided by Jason extends AgentSpeak(L) [Rao 1996], an abstract programming
language for BDI agents. A detailed discussion on the extensions that Jason brings to AgentS-
peak(L) is available in [Bordini 2006].

3Such as a Web-based integrated development environment (IDE) seamlessly integrated in
David’s STN Box (see scenarios in Section 5.1).

156 Chapter 9. Bringing Rational Agents to the Social Web of Things

program simple behaviors for social things without requiring advanced expertise in
multi-agent systems.

Henceforth, we refer to agents implemented using the Jason platform as Ja-
son agents. Jason agents are goal-driven and run continuously in reasoning cycles.
During a reasoning cycle, a Jason agent perceives changes in its environment and
reacts to events by executing plans intended to achieve goals. Goals are central to
agent-oriented programming.

A Jason agent typically starts with an initial set of goals to be achieved that
represent its design purpose, a belief base and a library of plans. Beliefs, goals and
plans can evolve throughout an agent’s lifetime. Beliefs can be collected from the
environment via sensors, they can be communicated by other agents, or they can
be generated by the agent itself (i.e., mental notes). Beliefs can also be inferred
from an agent’s existing belief base via rules. The library of plans can evolve, for
instance, by learning new plans from other agents. Goals can be generated by plans
in the pursuit of a given goal (i.e., a generated subgoal), or they can be delegated
by other agents.

Jason agents are situated and “live” in multi-agent environments. We discuss the
development of multi-agent environments for the SWoT in what follows.

9.1.2 Multi-agent environments for the SWoT

The major feature that our extension brings to the standard JaCaMo distribution
is the ability to create, retrieve and manipulate artifacts persisted on heterogeneous
STN platforms. We followed two design considerations for the implementation of
this feature:

R1 working with social artifacts should add minimal overhead for developers;

R2 any extensions for the SWoT should not diverge from the standard JaCaMo
distribution.

The first requirement implies that, for instance, the states of social artifacts
should synchronize seamlessly with STN platforms. For another example, when a
Jason agent receives a message, the transmitted information is automatically re-
flected in its belief base (see [Bordini 2007] for details). Receiving messages via an
STN should be reflected in an agent’s belief base much in the same way.

The second requirement implies that our SWoT middleware should not rely on
custom builds of the JaCaMo platform such that it can benefit from future platform
releases. For instance, per the first requirement, the most seamless mechanism to
retrieve social artifacts from the Web would be to overload the look-up operation
provided by CArtAgO workspaces, however this change would impact the CArtAgO
workspace artifact and thus diverge from the standard JaCaMo distribution.

In the following, we discuss the main features of the SWoT middleware that we
use to implement our application scenarios. We discuss working with social artifacts
in Section 9.1.2.1 and communication via STN platforms in Section 9.1.2.2.

9.1. A Multi-agent Middleware for the Social Web of Things 157

9.1.2.1 Working with social artifacts

In a JaCaMo application, Jason agents are situated in working environments that
are modeled and programmed by means of CArtAgO artifacts (cf. Figure 9.1).

Agents can act on CArtAgO artifacts by invoking operations [Ricci 2009]. Hence-
forth, to avoid confusion, we generally refer to the operations that are part of a
CArtAgO artifact’s usage interface as artifact operations, and to the operations de-
fined by our digital STN model (see Definition 6.1.11) as STN operations. If the
meaning of the term is obvious in the context in which it is used, we use simply
operation.

Our middleware currently provides four types of artifacts:

• UserAccountArtifact, which is a social artifact that wraps user accounts (see
Definition 6.1.26);

• MessageArtifact, which is a social artifact that wraps digital messages (see
Definition 6.1.28);

• SWoTProfileReaderArtifact, which is a helper CArtAgO artifact that agents
can use to retrieve and inspect SWoT profiles (see Section 7.1.2), for instance
to extract the user accounts held by an agent (see Definition 6.1.6);

• STNPlatformDescriptionReaderArtifact, which is a helper CArtAgO arti-
fact that agents can use to retrieve and inspect STN description documents
(see Section 7.1.3), for instance to extract the required parameters of an op-
eration.

Performing STN operations

The main benefit that our middleware brings to developers is that it hides all the
interaction with STN platforms. Developers are concerned only with the higher-
level, uniform interface exposed by the social artifacts provided by our middleware.
When an artifact operation is performed that involves one or more STN operations,
the middleware handles composing and issuing the associated HTTP requests, and
interpreting the HTTP responses, which includes the data integration step.

Creating social artifacts

A Jason agent can create a CArtAgO artifact in its current workspace by invok-
ing the makeArtifact operation provided by a CArtAgO workspace artifact, which
is part of the CArtAgO infrastructure. When the artifact is created, the arti-
fact’s initialization method is invoked with a list of parameters provided via the
makeArtifact operation.

Per R1, we overload the initialization methods of our social artifacts for both
creating new social artifacts and for retrieving existing ones from the SWoT. This
approach enables developers to work with social artifacts in a similar manner as
they would with regular CArtAgO artifacts.

158 Chapter 9. Bringing Rational Agents to the Social Web of Things

When creating a social artifact, the artifact’s initialization method requires:

1. the path to a configuration file that provides the performing agent’s authen-
tication data, which is necessary for signing HTTP requests (if the case); this
practice discourages hard-coding credentials in the agent logic;

2. the URI of the STN platform on which the artifact is to be created; this
URI should dereference to the platform’s STN description document (see Sec-
tion 7.1.3);

3. the parameters for the CreateUserAccount operation (see Section 6.3.3), as
implemented by the targeted platform.

For illustrative purposes, Listing 9.1 shows how an agent can create a user ac-
count on ThingsNet by invoking the makeArtifact CArtAgO primitive. The pa-
rameters transmitted to the social artifact’s initialization method begin on line 4 in
the form of a list [Bordini 2007] that contains the path to the performing agent’s
configuration file, the URI of the platform, a list with the names of the parameters,
and a list with the values of the parameters. Any term that starts with an uppercase
letter is a variable.

1 // Creat ing a user account on a ThingsNet node .
2 makeArt i fact (" acc1 " ,
3 " weba r t i f a c t s . UserAccountArt i fact " ,
4 [AuthFilePath , " http :// l o c a l h o s t :9000/ a s s e t s / s tn spec s / th ing sne t . t t l

#plat form" ,
5 [" stn−ops : Soc ia lTh ingClas s " ,
6 " stn−ops : SocialThingOwner" ,
7 " stn−ops : DisplayedName"
8] ,
9 [" http :// example . org/#socialTV" ,
10 "http :// l o c a l h o s t :9000/ us e r s / e75 . . . 8 f 3#David" ,
11 "Test TV"
12]
13] ,
14 Acc
15) ;

Listing 9.1: Using the makeArtifact CArtAgO primitive to create a user account
on ThingsNet.

Retrieving social artifacts from the SWoT

When retrieving an existing social artifact from the SWoT, the initialization of a
social artifact requires:

1. a path to the configuration file of the performing agent (see above);

2. an artifact URI or a platform URI and a platform-specific identifier.

9.1. A Multi-agent Middleware for the Social Web of Things 159

For illustrative purposes, Listing 9.2 shows an invocation of the makeArtifact
CArtAgO primitive to retrieve a user account from ThingsNet via the account’s
URI.

// Ret r i ev ing a user account from a ThingsNet node .
makeArt i fact (" acc1 " ,

" weba r t i f a c t s . UserAccountArt i fact " ,
[AuthFilePath , " http :// l o c a l h o s t :9000/ us e r s / e75 . . . 8 f 3#David"] ,
Acc

) ;

Listing 9.2: Using the makeArtifact CArtAgO primitive to retrieve a user account
from ThingsNet.

Crawling the SWoT

Social artifacts provide artifact operations that can result in retrieving additional
social artifacts that are directly added to the current workspace.

For illustrative purposes, Listing 9.3 shows how an agent can retrieve a Twitter
account and then retrieve the account’s outgoing social relations, which is an im-
plementation of the GetOutgoingRelations operation type (see Section 6.3.2). The
retrieved Twitter accounts are automatically wrapped in social artifacts and added
to the current workspace. A list of CArtAgO artifact identifiers is returned as an
output parameter. This approach, as opposed to returning only references to Twit-
ter accounts for instance, enables agents to manipulate the returned artifacts in a
direct and simple manner, and thus without additional overhead for developers (per
R1).

// Ret r i ev ing a user account from Twitter .
makeArt i fact ("tw1" ,

" weba r t i f a c t s . UserAccountArt i fact " ,
[AuthFilePath ,

" http :// l o c a l h o s t :9000/ a s s e t s / s tn spec s / tw i t t e r . t t l#plat form" ,
"swotwm"

] ,
Tw

) ;

// Ret r i ev ing the outgoing connect i ons o f a Twitter account .
getOutgo ingRelat ions (Conns) [a r t i f a c t_ i d (Tw)] ;

Listing 9.3: This listing shows the retrieval of the Twitter accounts followed by a
given user.

9.1.2.2 Communication via STNs

As noted in Section 5.2.1.2, existing social platforms generally function as central
brokers for messages exchanged between their users. Social things can communicate
via STNs by posting public messages, which are then routed by the platform to

160 Chapter 9. Bringing Rational Agents to the Social Web of Things

subscribers, or by sending direct messages to other social things. In the applications
presented in this chapter, we use Twitter to disseminate information among social
things. To this purpose, the user account CArtAgO artifact provided by our SWoT
middleware implements an artifact operation for posting messages to STN platforms,
and an artifact operation that activates/deactivates the receiving of new messages
posted by publishers the user account is subscribed to.

For illustrative purposes, Listing 9.4 shows a Jason plan [Bordini 2007] for re-
ceiving and replying to a new message. A Jason plan is composed of a triggering
event, a context in which the plan can be applied, and the plan’s body. In Listing 9.4,
the triggering event is that the agent received a new message on a given platform
and from a given user account. The agent prints the message to the standard output,
together with the name of the sender, and post an update on the STN.

+newFeedMessage (PaltformUri , SenderAccount , Message) : true <−
getName (PresumedSender) [a r t i f a c t_ i d (SenderAccount)] ;
. print ("New message : " , plat formUri , " " , PresumedSender , " " ,

Message) ;
postMessage ("A Jason agent with a message ! ") [a r t i f a c t_ i d (Tw)] .

Listing 9.4: A Jason plan for replying to a message received via an STN.

Our middleware provides an internal action [Bordini 2007] that agents can use
to interpret messages received via STNs and update their belief base accordingly.

Having introduced all the basic elements used by our middleware, in the following
sections we report on our implementations of the scenarios presented in Section 5.1.

9.2 Use Case: Crawling the Social Web of Things

We have implemented the “Social TV” scenario (see Section 5.1.1) using a Jason
agent to implement David’s social TV and the world-wide STG deployed in the
previous chapter (see Section 8.3). The purpose of this application scenario is to
showcase how the SWoT enables discoverability by searching the world-wide STG
in an informed manner.

9.2.1 Deployment Scenario

The world-wide STG used in this application scenario is deployed across Facebook,
Twitter, SoundCloud, Dweet.io, and multiple instances of ThingsNet. In addition to
the setup already presented in Section 8.3.1, for this application scenario we inject
movie ratings on predefined Dweet.io user accounts (see Section 8.1.4) to simulate
the data published by the social TVs of David’s friends.

The Jason agent is given the URIs of David and his STN Box, which we assume
are obtained from David during the installation of the social TV, and has to achieve
the following tasks:

1. Create a user account on the STN Box, i.e. ThingsNet.

9.2. Use Case: Crawling the Social Web of Things 161

2. Crawl the SWoT, using David’s URI as an entry point, to discover and create
social relations to other social TVs owned by David’s friends.

3. After the crawling phase is completed, search all user accounts that are held
by known social TVs and are hosted by platforms that support the operation
type denoted by stn-ops:GetUserAccountFeed.

4. For each user account discovered at the previous step, retrieve the latest mes-
sages posted to its feed.

Dereferencing David’s URI retrieves a representation of his SWoT profile pre-
sented in the previous chapter (see Listing 8.12), which is also his WebID profile
document [Sambra 2015a]. Dereferencing the URI of the STN Box retrieves a rep-
resentation of ThingsNet’s STN description document (see Appendix A).

The agent is also given three more preconfigured parameters: its social thing
class, which is http://example.com#SocialTV, and a name and description to be
displayed within STNs. The agent has a file with all the authentication data it needs
to sign HTTP requests in order to access the social platforms (see Section 8.1).

9.2.2 Agent logic

The agent uses the STNPlatformDescriptionReaderArtifact artifact (see Sec-
tion 9.1.2) to extract from ThingsNet’s STN description document the parame-
ters required to perform the CreateUserAccount operation type, that is (see Sec-
tion 8.2.2): its social thing class, the WebID of its owner, and a name to be displayed
within the STN. It then collects the required parameters from its initial belief base
and creates a UserAccountArtifact social artifact using these parameters and the
ThingsNet’s URI (see Section 9.1.2).

After registering to ThingsNet, the agent implements Algorithm 1 to crawl the
SWoT and create social relations to other social TVs. To construct David’s dis-
tributed social graph, the agent uses the SWoTProfileReaderArtifact artifact (see
Section 9.1.2) to extract from David’s SWoT profile the metadata required to re-
trieve representations of his user accounts on the various platforms he uses (cf.
Listing 8.12), and then retrieves the outgoing social relations of each user account.
If David’s SWoT profile also includes social relations, these are added to his dis-
tributed social graph.

For each of David’s friends or user accounts that represent one in his distributed
social graph, the agent retrieves the entity’s description to extract all things that
are owned by David’s friend. If the entity is a user account and its description
contains the friend’s SWoT profile, which is the case in our deployment scenario via
the website field (see discussion in Section 8.1), the agent constructs the friend’s
distributed social graph as it did for David.

162 Chapter 9. Bringing Rational Agents to the Social Web of Things

Algorithm 1 The crawling algorithm implemented by our Jason agent to discover
and connect to social TVs owned by David’s friends.
for all agents/user accounts in David’s distributed social graph do
if entity description contains a SWoT profile then
retrieve the SWoT profile
construct the entity’s distributed social graph

for all things owned by this entity do
if thing is a social TV then
create a social relation to thing

Figure 9.2: Results of crawling the deployed STG. The social TV has discovered
and created social relations to four other TVs owned by David’s friends.

For all discovered things, if the thing is a social TV, that is the thing’s class is
also denoted by http://example.com#SocialTV, the Jason agent creates a social
relation to the thing using the ThingsNet user account created previously. This
completes the crawling phase. The results are illustrated in Figure 9.2.

In a similar manner, the agent searches its own graph to discover any user ac-
counts held by known social TVs. For each discovered user account, the agent then
performs the getUserAccountFeed artifact operation, which is implemented by the
UserAccountArtifact social artifact (see Section 9.1.2). If the user account ’s host-
ing platform does not support the operation type denoted by the stn-ops:GetUser
AccountFeed URI, the action fails. It is important to emphasize that, in doing so,
the Jason agent is agnostic to the underlying hosting platforms.

9.3. Use Case: Flexible Interaction among Social Things 163

9.2.3 Lessons learned

An important observation based on this scenario implementation is that our ap-
proach adds value to the development of IoT applications by integrating platforms
with complementary functionality. In this particular scenario, the social TVs pub-
lish data via Dweet.io, a WoT platform (see Section 8.1.4). Dweet.io is a necessary
addition to this setup: social TVs could also use Twitter to obtain the same func-
tionality, however Dweet.io facilitates publishing structured data and keeps the data
feeds out of the way of human users. Furthermore, Twitter restricts messages to 140
characters (see Section 8.1.3). On the other hand, without integrating Dweet.io into
the SWoT, the social TVs’ data feeds and the Dweet.io platform itself would not be
discoverable. Both the Dweet.io data feed URIs and the platform-specific knowledge
required to access them would have to be hard-coded into social things.

Second, it is worth to notice that, given a proper SWoT middleware, developers
can easily implement complex functionality, such as crawling heterogeneous STNs.
Our middleware handles the heavy lifting of interfacing with heterogeneous plat-
forms and developers can focus on implementing the agent’s logic, which treats the
heterogeneous STNs in a uniform fashion. Furthermore, we expect that crawling
would be a commonly used functionality in the SWoT, and therefore additional li-
braries, possibly implementing various crawling strategies, could further streamline
the implementation of SWoT applications. This aspect also opens up an interest-
ing research topic to be investigated, that is strategies for informed searches in the
SWoT (see Section 10.3).

A challenge for the development and testing of this scenario implementation was
posed by API rate limits. For instance, the Twitter Public API v1.1 permits at most
15 authorized requests in a 15 minutes interval to most endpoints.4 This rate limit
is high enough to crawl the tiny Twitter graph deployed in our scenario, however it
sniffles the crawling of large graphs or the testing of such applications. We expect
that access to resources would be a constant challenge in the SWoT, which raises the
more general research question of defining strategies that social things could use to
share resources or compete for shared resources (see Section 10.3). On the one hand,
one could imagine that social things owned by the same user could, for instance,
share cached data or access to various APIs in order to mitigate rate limiting. On
the other hand, an STN Box could limit the outgoing or incoming traffic, therefore
causing social things to compete for access to outside STNs.

9.3 Use Case: Flexible Interaction among Social Things

We have implemented the “Wake-up Call” scenario (see Section 5.1.2) using multiple
Jason agents to implement David’s social things, and Twitter to implement his STN
Box. The purpose of this application scenario is to showcase:

• flexible interaction by means of agent interaction protocols (see Section 4.2.2.3);
4https://dev.twitter.com/rest/public/rate-limits, Accessed: 28.11.2015.

164 Chapter 9. Bringing Rational Agents to the Social Web of Things

• the use of the STN paradigm and STN platforms as information dissemination
mechanisms for social things that are intuitive for both developers and non-
technical users;

• the added value of using agent programming languages, such as Jason [Bordini 2007],
as domain-specific languages for programming social things.

9.3.1 Deployment scenario

In this scenario, David’s social things can interact in a flexible manner to wake him
up if he is sleeping and there is an upcoming meeting. To this purpose, the social
things produce and/or consume contextual information about David’s bedroom,
which we represent in terms of beliefs. For instance, whenever going to bed or waking
up, David can monitor his sleep by pressing a button on his wristband to switch
between the day and night operating modes. David’s actions result in beliefs that
the wristband holds about David being asleep or not. Beliefs can carry annotations,
such as the source that originated the belief (e.g., the wristband) and the degree
of certainty the source has in that belief, which in our scenario implementation is
represented as a decimal number in the [0,1] interval. The contextual information
that can be produced or consumed by the social things in this scenario is shown in
Table 9.1.

Table 9.1: Contextual information produced or consumed by the social things in
our scenario implementation.

Social Thing Produces Consumes
Calendar - asleep(david)
Wristband asleep(david)[certainty=0.8] -

Curtains
curtains state(open),
curtains state(closed)

asleep(david),
outside light level(Level)

Lights lights(on), lights(off)
asleep(david),
curtains state(State),
outside light level(Level)

The social things are all connected to one another via Twitter and can thus
broadcast messages to other things. The payload of a message published via the
STN includes:

• a performative, which we choose among the ones defined by Jason [Bordini 2007];

• a propositional content that denotes the object of the action.

In particular, in our implementation we use two performatives [Bordini 2007]:

• tell, which denotes that the sender of a message believes the transmitted
propositional content is true and intends for the receivers to believe so as well;

9.3. Use Case: Flexible Interaction among Social Things 165

• untell, which denotes that the sender of a message does not believe the
transmitted propositional content is true and intends for the receivers not
to believe as well.

For instance, a social thing can launch a call for proposals to wake up David by
posting the following message5: tell cfp(CNPId, achieve(not asleep(david))),
where CNPId is an identifier for the launched interaction. The propositional content
is a Jason term [Bordini 2007] and we assume that social things rely on domain-
specific ontologies or other conventions to interpret such messages.

It is worth to note that we model the social things in this scenario implementation
after existing products, such as the Jawbone UP24 wristband6, the Luna smart
mattress cover7, or the Luxone smart curtains8 (cf. Table 9.1).

9.3.2 Agent logic

David’s social things reason under the open-world assumption, that is to say what-
ever a social thing does not know to be true or false is simply unknown. We discuss
the logic implemented by each social thing in what follows.

The social calendar

The social calendar plays a central role in this scenario. If the calendar believes
that David is asleep and thus in danger of missing a scheduled meeting, it interacts
with the other social things in the home STN with the goal of waking him up. The
calendar is blindly committed to this goal, meaning that it will continue to attempt
to wake up David until it believes that David woke up. In order to determine if David
is asleep or not, the calendar relies on information published via the STN Box by
other social things, such as the wristband and mattress cover (cf. Table 9.1).

The calendar’s initial set of beliefs is shown in Listing 9.5. The calendar believes
that it is owned by David and that there is a meeting scheduled on December 1, 2015,
at 10:00. The calendar also believes that David prefers the most to be awakened up
by natural light, and the least by sound alarms.

owned_by(david) .
meeting ("m1" , 10 , 00 , 2015 , 12 , 01) .

alarm_rank (v ib ra t i on s , 1) .
alarm_rank (natura l_l ight , 0) .
alarm_rank (a r t i f i c i a l _ l i g h t , 2) .
alarm_rank (sound , 3) .

Listing 9.5: The calendar’s initial set of beliefs.

5We discussed agent interaction protocols in Section 4.2.2.3.
6https://jawbone.com/up/, Accessed: 26.09.2015.
7http://lunasleep.com/, Accessed: 26.09.2015.
8http://www.loxone.com/enen/smart-home/everything-managed/curtains-and-

blinds/curtains.html, Accessed: 26.09.2015.

166 Chapter 9. Bringing Rational Agents to the Social Web of Things

The Jason plans for monitoring David’s meetings are shown in Listing 9.6. The
calendar starts a new interaction to wake up its owner if it believes there is an
upcoming meeting and its owner is asleep. The rule upcoming meeting(M) infers
from the calendar’s belief base if there is a meeting M scheduled in less than one
hour. The calendar infers that its owner is asleep if it holds such a belief with a
degree of certainty above 0.5.

+!monitor_scheduled_meetings : upcoming_meeting (M) & owned_by(Owner) &
as l e ep (Owner) [c e r t a i n t y (C)] & C > 0.5 <−
. print ("Upcoming meeting " , M, " and " , Owner , " i s a s l e ep . ") ;
j i a . genUUID(CNPId) ; // generate a UUID f o r t h i s CNP
// s t a r t and manage the i n t e r a c t i o n
! startCNP (CNPId , ach i eve (not a s l e ep (Owner))) .

// keep monitor ing
+!monitor_scheduled_meetings : true <− ! monitor_scheduled_meetings .

Listing 9.6: The calendar’s plans for monitoring his owner’s meetings.

If David is asleep and there is a meeting scheduled in less than one hour, the
calendar initiates an interaction implementing the Contract-Net Protocol (see Sec-
tion 4.2.2.3 for details) by posting via Twitter the call for proposals (CFP) presented
in the previous section in order to wake up David. Social things that can perform
this action reply with proposals containing their wake up methods.

The calendar waits for a predefined amount of time to receive proposals and
selects one in accordance with its David’s preferences. If no proposals are received
or the wake up attempt fails (i.e., there are no updates from other social things that
David is not asleep anymore), the calendar reinitiates the interaction.

The social wristband

When David changes the function mode of his wristband from day to night to
record a new sleeping session, the wristband posts a message via the home STN
with the payload tell asleep(david)[certainty(0.8)]. Similarly, when David
changes the function mode from night to day, the wristband posts a message with
the payload untell asleep(david).

We simulate pushing the mode button via beliefs originated from a percept.
These beliefs are added to/removed from the wristband’s belief base, which activates
the corresponding plans shown in Listing 9.7. For instance, if the mode is changed
from day to night, the wristband takes a mental note that David is asleep with a
certainty of 0.8, and posts the confirmation via the STN Box.

+function_mode (n ight) [source (percept)] : owned_by(Owner) <−
+as l e ep (Owner) [c e r t a i n t y (0 . 8)] ;
. concat (" t e l l a s l e ep (" , Owner , ") [c e r t a i n t y (0 . 8)] " , Message) ;
postMessage (Message) .

−function_mode (n ight) [source (percept)] : owned_by(Owner) <−
−a s l e ep (Owner) ;

9.3. Use Case: Flexible Interaction among Social Things 167

. concat (" un t e l l a s l e ep (" , Owner , ") [c e r t a i n t y (0 . 8)] " , Message) ;
postMessage (Message) .

Listing 9.7: The wristband’s plans for function mode changes.

If the wristband receives a CFP to wake up its owner, and it believes the owner
is asleep, it posts its proposal to wake up David via its vibration alarm. The Jason
plan implemented for this purpose is shown in Listing 9.8. It is worth to note that
this plan triggers only if the the wristband believes that indeed David is asleep.
This implies that the wristband is in night mode and, if so, we assume it is likely
that it is also on David’s wrist.

+cfp (CNPId , ach i eve (not a s l e ep (Owner))) : owned_by(Owner)
& as l e ep (Owner) <−
// add the proposa l to the b e l i e f base (mental note)
+proposa l (CNPId , ach i eve (not a s l e ep (Owner)) , alarm_type (v i b r a t i o n s)) ;
// cons t ruc t and post message
. concat (" t e l l propose (" , CNPId , " , alarm_type (v i b r a t i o n s)) " ,

Message) ;
postMessage (Message) .

Listing 9.8: The wristband’s plan for posting proposals.

If the proposal is accepted, the wristband sets off its vibration alarm to wake up
David, which we implement by means of two Jason plans shown in Listing 9.9. The
wakeup attempt rule is used to simulate the wake-up attempt with a 50% chance
of success.

+! set_of f_vibrat ions_alarm (CNPId) : wakeup_attempt (true) <−
−+function_mode (day) [source (percept)] ; // s imulate mode change
. concat (" t e l l inform_done (" , CNPId , ") " , Message) ;
postMessage (Message) .

+! set_of f_vibrat ions_alarm (CNPId) : wakeup_attempt (f a l s e) <−
. concat (" t e l l f a i l u r e (" , CNPId , ") " , Message) ;
postMessage (Message) .

Listing 9.9: The wristband’s plans for waking up David.

It is worth to note that the wristband’s belief that David woke up may, in fact,
be false. For instance, David can cancel the alarm, switch the function mode, and
go back to sleep. Luckily for David, however, he also has a social mattress cover.

The social mattress cover

The social mattress cover functions similarly to the wristband, with the difference
that it uses sensors to detect if David is in bed or he got out of bed, and therefore
has a higher degree of certainty in its beliefs (cf. Table 9.1). The mattress cover
can only provide information to other social things, it cannot wake up David in any
way.

168 Chapter 9. Bringing Rational Agents to the Social Web of Things

The social curtains

Listing 9.10 shows the plan implemented by the social curtains in order to respond
to calls for proposals that it has learned about. The social curtains propose to wake
up their owner only if (i) they hold a belief he is asleep that originated from the
mattress cover, which we assume implies that David is sleeping in his bedroom, (ii)
the curtains are not already open, and (iii) outside light level is above 100 lux (S.I.),
which is the equivalent of a very dark day9. We assume that the curtains can get
readings of outside light levels on-demand from a light sensor.
daytime (V) :− ou t s i d e_ l i gh t_ l eve l (L) & . eva l (V, L >= 100) .

+c fp (CNPId , ach i eve (not a s l e ep (Owner))) : owned_by(Owner)
& as l e ep (Owner) [source (mattress_cover)]
& cur ta in s_sta t e (c l o s ed) & daytime (true) <−
// mental note to remember my proposa l
+proposa l (CNPId , ach i eve (not a s l e ep (Owner)) , alarm_type (

natura l_ l i gh t)) ;
// post proposa l
. concat (" t e l l propose (" , CNPId , " , alarm_type (natura l_ l i gh t)) " ,

Message) ;
postMessage (Message) .

Listing 9.10: The social curtains’ plan for posting proposals.

The social lights

The context in which the social lights in David’s bedroom offer to wake up David
is complementary to the one addressed by the social curtains, that is if the outside
light level is below 100 lux (S.I.), or if it is above and the curtains are closed (cf.
Listing 9.11). The lights rely on information posted by the curtains and readings of
outside light levels.
+cfp (CNPId , ach i eve (not a s l e ep (Owner))) : owned_by(Owner)

& as l e ep (Owner) [source (mattress_cover)]
& (daytime (f a l s e) | (cu r ta in s_s ta t e (c l o s ed) & daytime (true))) <−
// mental note to remember my proposa l
+proposa l (CNPId , ach i eve (not a s l e ep (Owner)) , alarm_type (

a r t i f i c i a l _ l i g h t)) ;
// post proposa l
. concat (" t e l l propose (" , CNPId , " , alarm_type (a r t i f i c i a l _ l i g h t)) " ,

Message) ;
postMessage (Message) .

Listing 9.11: The social lights’ plan for posting proposals.

The social smartphone

The social smartphone is a mobile device and relies on sound to wake up its owner,
therefore it can respond with a proposal in any context. The logic implemented for

9http://www.engineeringtoolbox.com/light-level-rooms-d 708.html, Accessed: 27.09.2015.

9.4. Use Case: Remote Interaction with Social Things 169

the smartphone is similar to the one presented for the other social things.

9.3.3 Lessons learned

This scenario implementation illustrates the use of agent interaction protocols to
enable flexible interaction among things. The main benefit of this approach, as op-
posed to a static IoT mashup, is that things are decoupled and can thus be deployed
and can evolve independently from one another, which provides for a flexible way of
constructing smart environments. One could also imagine a process-driven compo-
sition of services that integrates agent interaction protocols to discover or auction
for service providers.

Developers can easily program or extend social things with new functionality,
given appropriate paradigms and frameworks. The social things in this scenario
implementation rely on simple plans for reacting to changes in their environment,
such as calls for proposals launched by the social calendar. Furthermore, given
that social things are programmed at a very abstract and intuitive level, that is in
terms of beliefs, goals, and plans, we hypothesize that, given the right tools, tech
savvy users without expertise in multi-agent systems could, in fact, program smart
environments. For instance, David’s STN Box could expose a Web front end that
allows David to add new plans to his social things. Simple plans could be created
via an advanced graphical user interface.

It is worth to note that STNs can be used as mechanisms for logging interactions
in smart environments. Human users can then inspect such interactions in an already
intuitive and familiar fashion. This aspect opens up an interesting research topic,
that is explaining actions in SWoT environments (see Section 10.3).

In our implementation, all social things follow one another. As the number
of social things increases, it becomes increasingly important for social things to
manage their relations such that they optimize the flow of information in the STN.
For instance, there is little reason for the wristband to subscribe to updates from
the social curtains in our scenario. Social things could choose their relations, for
instance, based on the contextual information produced or consumed by other social
things, or based on their interaction history with other social things. This aspect
opens up an interesting research topic, that is managing relations in the SWoT (see
Section 10.3).

9.4 Use Case: Remote Interaction with Social Things

We have implemented the “Laundry Room” scenario (see Section 5.1.3) using Jason
agents to implement the washing machines and Twitter to enable interaction with
users. The purpose of this application scenario is to showcase the use of digital STNs
as uniform mechanisms for remote interaction with heterogeneous things: Andrei
can post a tweet to discover available washing machines, receive replies and reserve a
time slot for doing his laundry, as opposed to the trial-and-error approach of visiting

170 Chapter 9. Bringing Rational Agents to the Social Web of Things

each laundry room on each floor of his student house (see Section 5.1.3 for more
details).

9.4.1 Deployment Scenario

The interaction pattern in this scenario is similar to one in the “Wake-up call”
scenario in the previous section, with the difference that in this scenario a person
initiates the interaction with a call for proposals for doing the laundry.

We run two instances of the same Jason agent to implement two washing ma-
chines. A person can interact with the agent by tweeting “laundry”. The agents
reply with their availability.

9.4.2 Agent logic

The plans implemented by the Jason agent to process and reply to tweets are shown
in Listing 9.12. The agent ignores any messages that are not “laundry”, and replies
to the other by proposing a time.

+! proce s s_t ime l ine ([A| Authors] , [" laundry " | S ta tuse s]) : true <−
. print ("Got laundry command from " , A) ;
. time (H,M,_) ;
. concat ("@" , A, " " , " I can do the laundry at " , H, " : " , M + 10 ,

Reply) ;
postMessage (Reply) ;
! p roce s s_t ime l ine (Authors , S ta tuse s) .

// got a tweet that i s not a laundry c fp
+! proce s s_t ime l ine ([A| Authors] , [S | S ta tuse s]) : true <−

! p roce s s_t ime l ine (Authors , S ta tuse s) .

+! proce s s_t ime l ine ([] , []) .

Listing 9.12: The washing machines’ plans for processing and replying to tweets.

9.4.3 Lessons learned

This scenario implementation illustrates the use of digital STNs as intuitive, uni-
form mechanisms for remote interaction with heterogeneous things. It also contrasts
interactions in natural language to the previous agent communication language in-
teractions. In an STN platform, one can imagine that both could be used, one to
be displayed to people, and the other to be consumed by agents. We discuss this
further in the future work section (see Section 10.3).

In this implementation, messages are grouped in a thread that users can easily
inspect. This behavior, however, requires that agents hard-code a feature that is
specific to the Twitter platform. To reply to a tweet, the operation can include a
parameter with the platform-specific identifier of the tweet, but it must also include
in the reply the Twitter screen name of the author of the tweet, otherwise the

9.5. Use Case: Regulation in the Social Web of Things 171

parameter is ignored.10 Our model and STN ontology can handle the first condition,
however the latter cannot be expressed at the moment. We leave it as future work
to further investigate actions related to social media, such as creating threads of
messages, promoting and disseminating content (see Section 10.3).

9.5 Use Case: Regulation in the Social Web of Things

We have implemented the “A Welcoming Home” scenario (see Section 5.1.4) using
Jason agents to implement David’s social things, MOISE+ [Hubner 2007] to design
and implement a multi-agent organisation for David’s home (see Section 5.3.4), and
Twitter to implement David’s STN Box. The purpose of this application scenario
is to showcase the use of externally defined norms and regulation mechanisms for:

• manipulating relations among social things in the SWoT;

• coordinating the behavior of social things towards achieving common goals.

9.5.1 Organisational specification

In this application scenario, David leaves his office to head home, which is announced
by his car via posting a message on his STN Box. David’s social things coordinate
to prepare a warm welcoming.

To implement this scenario, we use MOISE+ [Hubner 2007] to design a nor-
mative organisation for David’s home environment. The complete organisational
specification is available in Appendix B.

A MOISE+ organisation is designed on multiple dimensions, namely structural,
functional, and normative. The structural dimension defines roles that agents can
enact when entering the organisation, links among those roles, which can be ac-
quaintance, communication, or authority links, and groups defined by means of roles
and role cardinalities.

We define the structural dimension of our organisation as follows:

• roles: we define a root role, which is social thing, and extend it to define
roles for each type of social thing owned by David (e.g., car, vacuum cleaner,
thermostat);

• links: we define a single communication link, from social thing to social thing;

• groups: we define a single group specification, that is home group, that con-
tains exactly one role for each of type of social thing in this scenario.

The agents in our scenario implementation have predefined roles that they enact
when joining the organisation. In the initial state of the application, there are no
social relations between the agents.

10https://dev.twitter.com/rest/reference/post/statuses/update, Accessed: 03.12.2015.

172 Chapter 9. Bringing Rational Agents to the Social Web of Things

The functional dimension of our organisation defines a single scheme specifi-
cation, namely welcome home scheme (cf. Appendix B). The goal of preparing a
warm welcoming is decomposed in multiple subgoals that can agents can achieve in
sequence or in parallel. Goals are grouped in missions.

The normative dimension assigns missions to roles by means of norms, which
can specify obligations or permissions. When an agent enacts a role, he must fulfill
the obligations associated to that role. We discuss this further in the following.

9.5.2 Agent logic

We run our application scenario in three phases. In the first phase, a home agent
instantiates a home group group via an organisational artifact [Boissier 2013]. Once
the group is available, each agent adopts its predefined role.

In the second phase, social things conform to the organisation’s structural speci-
fication to “follow” one another on Twitter. The structural specification is available
as an observable property of the organisational artifact.

In the third phase, the car agent posts a message that David is heading home.
The home agent picks up the update, instantiates the welcoming home scheme
scheme via an organisational artifact, and adds it to the previously created group.
This action initiatives the scheme, and each agent has to fulfill its obligations.

In our implementation, agents are norm-compliant, that is to say they fulfill all
their obligations. There are two types of obligations an agent can receive from a
MOISE+ organisational scheme artifact [Hubner 2007]: to commit to a mission or
to achieve a goal. For illustrative purposes, the plans implemented by each agent to
deal with obligations are shown in Listing 9.13.

+ob l i g a t i o n (Ag ,Norm, committed (Ag , Mission , Scheme) , Deadl ine)
: .my_name(Ag) <−
. print (" I am ob l i g ed to commit to " , Miss ion) ;
commitMission (Miss ion) [art i fact_name (Scheme)] .

+ob l i g a t i o n (Ag ,Norm, achieved (Scheme , Goal ,Ag) , Deadl ine)
: .my_name(Ag) <−
. print (" I am ob l i g ed to ach ieve goa l " , Goal) ;
// Act on the environment to f u l f i l l goa l .
// Not i fy that I have achieved my goa l :
goalAchieved (Goal) [art i fact_name (Scheme)] .

Listing 9.13: Plans implemented by the Jason agents in this scenario in order to
fulfill their obligations.

9.5.3 Lessons learned

In this application scenario, we demonstrate the use of normative concepts, which
are defined externally to the agent logic, for bootstrapping social things into an
STN. By externalizing the definition of relations among social things, the structure
of an STN can evolve independently of the agents, which is an important aspect

9.6. Summary 173

in an open system in which no assumptions can be made about the logic of het-
erogeneous agents. Furthermore, this approach also simplifies the agent logic. For
instance, a conforming agent would only need to implement a simple strategy of al-
ways fulfilling obligations to create or delete relations, if such obligations are received
from authorized parties (e.g., its owner, hosting STN Box). If such a mechanism
is not implemented, or the agent fails to follow its obligations, from the system’s
perspective it is easy to take measures against the agent, such as social exclusion
or prohibiting access to the service. The approach we take in this scenario comple-
ments and may be used in conjunction with the one already discussed in Section 9.2
for the implementation of the “Social TV” scenario, in which rules and strategies for
managing relations are embedded in the agents’ logic.

The second motivation of this application scenario is to demonstrate the use of
regulation mechanisms to coordinate the behavior of social things. Using MOISE+,
we are able to define and decompose goals in terms of subgoals that may be achieved
in sequence or parallel. This approach may seem similar to the process-driven ap-
proach typically used for creating physical mashups, however the autonomy of social
things implies an important benefit that enables the development of more flexible
IoT applications: autonomous agents can learn on-the-fly how to achieve goals,
for instance by exchanging plans and functional schemes with other agents, or by
constructing plans and functional schemes via automated planning, similar to the
goal-driven composition of services discussed in Section 3.3.2. It is also worth to
note that goals, goal decomposition, plans and actions are intuitive, high-level con-
cepts that do not require a technical background, and therefore could also be used
by non-technical users in order to program and customize their smart environments.

9.6 Summary

In this chapter, we addressed Research Question 4, that is how to enhance discover-
ability and flexible interaction in the Web of Things. To this purpose, we applied our
approach to integrate heterogenous STN platforms into a world-wide socio-technical
graph (STG) in order to create hypermedia-driven, multi-agent environments for the
SWoT. We were then able to apply existing multi-agent technologies to bring ratio-
nal agents to the SWoT. These agents are autonomous, and they can autonomously
make decisions and act upon them. For instance, they can autonomously crawl the
world-wide STG to discover other social things, while being agnostic to the underly-
ing hosting platforms. They can autonomously manipulate the STG such that they
can “rewire” their relations with other agents, therefore creating flexible networks of
agents. They can autonomously use these relations to interact with other agents,
therefore achieving flexible interaction. Agents, both human and non-human, are
thus quite literally weaving the Social Web of Things.

In Section 9.1, we presented the multi-agent middleware for the SWoT that we
use to develop the applications presented in this chapter. In Section 9.2, we reported
on our implementation of the “Social TV” scenario (see Section 5.1.1) to showcase

174 Chapter 9. Bringing Rational Agents to the Social Web of Things

discoverability by means of informed searches on the world-wide STG (cf. Limita-
tion 1 and Limitation 2). In Section 9.3, we reported on our implementation of the
“Wake-up call” scenario (see Section 5.1.2) to showcase flexible interaction by means
of agent interaction protocols (cf. Limitation 3). In Section 9.4, we reported on our
implementation of the “Laundry Room” scenario (see Section 5.1.3) to showcase the
use of STNs as uniform mechanisms for remote interaction with heterogenous things
(cf. Limitation 4). In Section 9.5, we reported on our implementation of the “A wel-
coming home” scenario (see Section 5.1.4) to showcase the use of externally defined
regulations and regulation mechanisms for enabling control over the evolution of the
world-wide STG and achieving coordination among social things.

The scenario implementations presented in this chapter validate the founda-
tional principles introduced in Chapter 5, which provide the undermining of our
proposal, and demonstrate that are able to successfully address the four limitations
that motivate our work (see Section 1.1).

Part IV

Conclusions and Perspectives

Chapter 10

Conclusions and Perspectives

Contents
10.1 Summary . 177

10.2 Contributions . 179

10.3 Future Work . 181

10.3.1 Limitations . 181

10.3.2 Privacy preservation . 182

10.3.3 Social reasoning . 183

The goal of our thesis is to enable autonomous and flexible interaction in a global
Internet of Things (IoT) ecosystem. This requires that things are not confined to
Web silos, they are discoverable, and they go beyond being manually wired in static
IoT mashups. Furthermore, people should be able to manage, interact with and keep
track of large numbers of heterogeneous, collaborative things in a uniform fashion.

We proposed to address these limitations by endowing things with autonomy and
applying the social network metaphor to the IoT to create flexible networks of people
and autonomous things. We envision an open and self-governed IoT ecosystem,
which we call the Social Web of Things (WoT), in which people and things are
situated and interact in a global environment sustained by heterogeneous platforms
that supports discoverability and flexible interaction. Autonomous things are first-
class citizens of this ecosystem and, together with people, they are quite literally
weaving the SWoT.

In this chapter, we summarize this dissertation, our contributions, and discuss
perspectives on future research.

10.1 Summary

In this section, we present a brief summary of this dissertation. We discuss our
contributions in further detail in the following section.

In Chapter 1, we introduced the motivation of our work, and we presented
our thesis and the research questions that we address in this dissertation. This
dissertation is structured in four parts.

178 Chapter 10. Conclusions and Perspectives

In Part I, we analyzed the state-of-the-art to define in further detail the limita-
tions that motivate our work and to identify related models and technologies that
could help bring about the envisioned IoT ecosystem.

In Chapter 2, we presented the REST architectural style, which guided the devel-
opment of the modern Web, we analyzed in further detail the problem of Web silos,
and we discussed current developments in the Web research community. We now
have the required standards and technology to enable application-layer interoper-
ability in the IoT via the Web. However, if the IoT is to be a true global ecosystem,
it is mandatory to find solutions that would mitigate the problem of Web silos. To
the best of our knowledge, there are no proposals that would enable the structured
integration of non-uniform, non-hypermedia APIs into a global, hypermedia-driven
environment.

In Chapter 3, we discussed in further detail the limitations that motivate our
work. Discoverability and searching the WoT, interacting with large numbers of
heterogeneous devices, and enabling automatic composition of IoT mashups are
open problems being investigated from various angles. Some of these approaches
look at applying social concepts, and in particular social networks, to the IoT/WoT.
However, in most cases, these approaches are limited to leveraging existing online
social platforms, and in many cases they are focused on particular platforms. Other
proposals go a step further and, in addition to social networks, also take into account
endowing things with autonomous behavior. However, these proposals either do not
provide solutions to endow things with such abilities or are limited to hard-coding
a predefined set of rules into things to govern their behavior.

In Chapter 4, we looked at current results from multi-agent research that could
be useful to endow things with autonomous behavior. We found that there are many
existing paradigms and technologies that could be useful to this purpose, but also
to endow things with sociability, that is the ability to autonomously interact with
other entities, and to make them susceptible to regulation.

In Part II, we introduced our vision, models and solutions that could help bring
about the envisioned IoT ecosystem.

In Chapter 5, we presented several application scenarios to help articulate our
vision and define the properties and requirements for the SWoT. Based on the
latter, we postulated four foundational principles that provide the underpinning
of our approach, namely relying on a RESTful architecture, and enabling social
connectivity, autonomy, and regulation in the SWoT. Guided by a set of design
principles (i.e., generality, separation of concerns, interoperability), we reasoned up
from these foundational principles to propose our layered architecture for the SWoT.

In Chapter 6, we defined in further detail the various dimensions of STNs. We
formalized our discussion via a general mathematical model for STNs that can be
used to model any network-like system of agents. We then extended this model
with formal definitions for the digital dimension of an STN. The digital STN model

10.2. Contributions 179

provides an unambiguous foundation for the SWoT that things can use both to
obtain reliably representations of STNs, and of the operations through which they
can access and participate in the STN.

In Chapter 7, we applied our digital STN model to provide a semantic descrip-
tion framework for STNs. Developers can use this framework to integrate existing
platforms into the SWoT as STNs, or in the development of new STN platforms.
We presented solutions to achieve uniform interfaces for heterogeneous STNs and a
progressive integration strategy for the development and integration of STNs into
the SWoT. Hiding platform heterogeneity behind uniform interfaces is necessary in
order to decouple things from their environments.

In Part III, we reported on the current validations of our work.

In Chapter 8, we reported on our experience with deploying a world-wide socio-
technical graph (STG) across multiple existing social platforms (i.e., Facebook, Sound-
Cloud, Twitter), a WoT platform (i.e., Dweet.io), and ThingsNet, our own imple-
mentation of a Level 5 STN platform (cf. Section 7.3). We validated our deployment
via an STN browser that a human user can use to navigate and manipulate the de-
ployed STG. In particular, this deployment validates our approach for integrating
heterogenous platforms into a hypermedia-driven environment for the SWoT.

In Chapter 9, we began our discussion by introducing a multi-agent middle-
ware whose purpose is to facilitate the development of SWoT applications. The
middleware hides the details of interfacing with heterogeneous STN platforms and
allows developers to focus on programming agent behavior instead. Social things
are programmed as BDI agents situated in Web-enabled multi-agent environments.
We then reported on our experience with using this middleware to implement the
scenarios introduced in Section 5.1. In doing so, we completed our investigation by
validating our approach and the foundational principles behind it.

10.2 Contributions

We summarize and group our contributions in accordance with the four research
questions we address in this dissertation:

Research Question 1. How can we bring systems of autonomous things to the
Web of Things?

We proposed an architecture for the SWoT (see Section 5.3) based on a well-
defined set of foundational principles that provide the underpinning of our approach.
This architecture conforms to the REST architectural style, which ensures unbound
scalability and facilitates the integration of the large number of existing Web ser-
vices. It adapts models from multi-agent research to introduce several layers of
abstraction that provide a structured approach for designing and implementing sys-
tems of things that are autonomous, social (i.e., they can autonomously manage

180 Chapter 10. Conclusions and Perspectives

their relations and interactions with one another and with their human users), and
susceptible to regulation. These layers of abstraction are useful to enable developers
and users to cope with the envisioned complexity of the overall ecosystem.

We introduced a multi-agent middleware for the SWoT (see Section 9.1) that
lowers the entry-barrier for the development of SWoT applications by providing
developers with all the abstractions defined by our layered architecture. This mid-
dleware emphasizes minimal development overhead, and reuse and alignment with
existing multi-agent technologies. It is also worth to note that from the perspec-
tive of multi-agent application developers that are not necessarily interested in the
SWoT, this middleware nevertheless enables them to create multi-agent environ-
ments that can be widely distributed across heterogeneous platforms.

Research Question 2. How can we model networks of people and autonomous
things such that machines can manipulate and reason upon them?

We introduced a formal model for socio-technical networks (STNs) (see Sec-
tion 6.2), and in particular digital STNs (see Section 6.3). Following the separation
of concerns principle, our digital STN model is defined in terms of digital artifacts
and artifact-specific operations such that it can be easily extended and adapted to
domain-specific requirements.

We introduced a semantic description framework for STNs based on our formal
model (see Section 7.1). This framework consists of an ontology for STNs, which we
call the STN ontology (see Section 7.1.1), and a set of guidelines that developers can
use to create and publish semantic descriptions of agents (see Section 7.1.2), STN
platforms (see Section 7.1.3), and digital artifacts (see Section 7.1.4). Following the
separation of concerns principles, the STN ontology has a modular design such that
it can be easily extended to fit domain- and application-specific requirements.

Research Question 3. How can we enable things to transcend Web silos?

We proposed solutions to achieve uniform interfaces for heterogeneous STN plat-
forms (see Section 7.2). Our proposal is based on the digital STN model, which
is useful to enhance interaction across heterogeneous platforms, for instance by
means of social relations (see Definition 6.1.13) and hosting relations (see Defini-
tion 6.1.24). However, the same approach could be applied with other domain-
specific models as well, such as the catalogues of things proposed by Blackstock et
al. [Blackstock 2014a].

We proposed a progressive, five-level strategy for the integration of heteroge-
nous STN platforms into a hypermedia-driven environment for the SWoT (see Sec-
tion 7.3). This strategy enables developers to balance platform design and imple-
mentation autonomy against the benefits of achieving a stronger integration into the
SWoT. We demonstrated that our approach and strategy supports high heterogene-
ity by integrating into a hypermedia-driven environment the non-hypermedia APIs
of several existing social platforms, namely Facebook, Twitter, and SoundCloud, and
a WoT platform, that is Dweet.io.

10.3. Future Work 181

We introduced STN description documents for Facebook, Twitter, SoundCloud
and Dweet.io (see Section 8.1 and Appendix A). Developers of social things can
reuse these platform descriptions to enable their applications to operate in a uniform
fashion across the mentioned platforms.

We introduced a browser for STNs (see Section 8.3.2), that is a Web application
that can interpret STN description documents in order to interface with heteroge-
nous STN platforms and provide users with appropriate controls to participate in
those platforms. Users could use this application to browse the SWoT, and devel-
opers could use this application to test and validate the integration of their STN
platforms into the SWoT.

Research Question 4. How can we enhance discoverability and flexible interaction
in the WoT?

We proposed an approach that applies the social network metaphor to the WoT
and endows things with autonomy (see Section 5.2.1 and Section 5.3.2). Our ap-
proach improves discoverability in the WoT by interconnecting people and things
via explicit, typed relations. Things can then reliably use these relations to au-
tonomously discover and interact with other agents, and they can reliably manip-
ulate them to “rewire” themselves in a flexible fashion. Flexible interaction is also
supported by STN platforms that use relations between their users to route the flow
of information in STNs, therefore acting as central brokers that decouple commu-
nication. We demonstrated the validity and applicability of our approach in Chap-
ter 9, where we reused existing multi-agent models and technologies to showcase
these features via multiple application scenarios.

We introduced a hypermedia-driven, open STN platform, which we call ThingsNet
(see Section 8.2). Developers could reuse and extend our prototype implementation
to create hypermedia-driven environments that support discoverability and flexible
interaction.

10.3 Future Work

The envisioned SWoT ecosystem opens up many opportunities for future research.
We group some of these opportunities around topics that we present in what follows.

10.3.1 Limitations

Formalizing the Normative layer. A research challenge that we do not cur-
rently address in our work is to provide a formalization of the Normative layer.
The normative multi-agent systems community is yet to reach consensus on many
normative concepts [Andrighetto 2013]. For instance, it would be useful to have a
uniform model for describing a platform’s terms of use in machine-readable format.
Social things could then, for instance, reason about using a platform or the other.
For another example, a unified model for describing normative organisations. Per

182 Chapter 10. Conclusions and Perspectives

our discussion in Section 4.3.3, organisations are generally implemented in MAS
by means of organisation management infrastructures, which are essentially services
agents can use to join, leave and participate in organisations. If these services would
expose Web APIs, then one could use a unified model of normative organisations
defined in terms of organisational artifacts and artifact-specific operations to create
platform descriptions very much similar to the ones we currently provide for STN
platforms.

Defining a linked data protocol for STNs. Per our discussion in Section 7.2.1,
we suggest the Linked Data Platform (LDP) [Speicher 2015] could serve as a standard-
compliant foundation for interaction between SWoT components. However, as we
noted in our discussion of the ThingsNet implementation (see Section 8.2.3), a linked
data protocol for STNs would have to extend the LDP platform with domain-specific
requirements.

It is also worth to note that the current LDP specifications [Speicher 2015] are
based on HTTP [Fielding 2014c] and use features that cannot currently be imple-
mented via standard CoAP features [Shelby 2014a], which supports only a subset
of the features provided by HTTP. A further investigation of how the LDP could
be adapted for CoAP-based implementations would be interesting in the context of
the SWoT, and of the WoT in general.

Integrating constraint devices into the SWoT. In our discussion, we constantly
took into consideration requirements for resource-constrained devices. Nevertheless,
a more thorough investigation is necessary to explore what could be achieved. For
instance, as already noted in Section 7.2.1, it would be useful to define domain-
specific media types for STNs that are optimized for constrained devices.

It is also worth to note that the SWoT could benefit from non-Web IoT proto-
cols as well. For instance, a well-known IoT protocol that currently has traction is
MQTT 1, a publish/subscribe messaging protocol for machine-to-machine communi-
cation. Messages are exchanged via a central broker that handles subscription-based
routing. Therefore, MQTT could be useful, for instance, to implement real-time
communication between social things at the edge of the network, such as on David’s
STN Box in our scenarios (see Section 5.1).

10.3.2 Privacy preservation

Privacy is a well-known problem in current social platforms. Privacy concerns are
not only related to large amounts of data collected by social networking services,
but also to the over-sharing of information. Unknowingly, people often share online
information about themselves or their friends without perceiving the full implica-
tions of their actions [Nissenbaum 2009]. The barriers that people are generally
accustomed to in the physical world are teared down without notice in the digital

1http://mqtt.org/, Accessed: 06.12.2015.

10.3. Future Work 183

world, in which information travels much faster. Furthermore, once committed, a
privacy violation can not be simply reversed. We can only expect this problem to
get worst in STNs with large numbers of autonomous things that are able to per-
ceive and act on the physical-digital space, and to actively participate in the SWoT
by publishing information. To address such issues, it is necessary to provide people
with easy-to-use mechanisms that ensure their personal information is shared in the
right context, in the right ways and with appropriate others.

10.3.3 Social reasoning

Searching the SWoT and relationship management. In our implementation
of the “Social TV” scenario, the social TV agent follows a very simple strategy to
perform an informed search in the SWoT and discover other social TVs owned by
his owner’s friends. Per our discussion in Section 3.2.2, searching the WoT is a well-
recognized open problem. It could be fruitful, for instance, to further investigate
various strategies by means of which social things could manage their relations and
crawl the SWoT in a more effective manner. Such toupees are already investigated
by the Social Internet of Things initiative (see Section 3.4.2).

Optimizing access to resources in the SWoT. In our discussions of the scenario
implementations in Chapter 9, we have already noted that, at least for existing
platforms, API rate limits can be an impediment for the development of SWoT
applications. We expect that platform resources would be a constant challenge in
the SWoT. Therefore, it would be useful to investigate various strategies that social
things could use to share resources or even compete for resources.

Explaining actions in SWoT environments. We have suggested and argued
that STNs could provide a uniform interface for remote interaction with large num-
bers of heterogenous, autonomous and collaborative things. Nevertheless, in our
scenario implementations, social things communicate either via agent communica-
tion languages or by identifying keywords and serving hard-coded natural language
responses. It would be far more useful if social things could reliably interpret nat-
ural language and also explain their actions in natural language such that they are
easily understood by everyday users.

List of publications

Ciortea, A., Zimmermann, A., Boissier, O., and Florea, A. (2015). Towards a Social
and Ubiquitous Web: A Model for Socio-technical Networks. In Proceedings of the
2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology (WI-IAT), Volume 1 (pp. 461-468). IEEE.

Ciortea, A., Boissier, O., Zimmermann, A., and Florea, A. (2014). Open and Inter-
operable Socio-technical Networks. In Proceedings of the 16th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)
(pp. 251-257). IEEE.

Ciortea, A., Boissier, O., Zimmermann, A., and Florea, A. (2013). Reconsidering the
Social Web of Things: position paper. In Proceedings of the 2013 ACM International
Conference on Pervasive and Ubiquitous computing adjunct publication (UbiComp)
(pp. 1535-1544). ACM.

Ciortea, A., Boissier, O., Zimmermann, A., and Florea, A. (2013). Adding a Social
Dimension to the Web of Things, Poster session, Journees Scientifique Systeme
Embarque (SEmba).

Ciortea, A., Krupa, Y., and Vercouter, L. (2012). Designing privacy-aware social
networks: A multi-agent approach. In Proceedings of the 2nd International Confer-
ence on Web Intelligence, Mining and Semantics (WIMS) (pp. 8:1-8:8). ACM.

Part V

Appendices

Appendix A

Examples of STN Description
Documents

In this appendix, we present the STN description documents (see Section 7.1.3) we
have created for the platforms presented in Chapter 8, namely Facebook, Twitter,
SoundCloud, Dweet.io, and ThingsNet.

A.1 Facebook

@base <http ://www. facebook . com/> .
@pref ix stn : <http :// pur l . org / stn / core#> .
@pref ix stn−ops : <http :// pur l . org / stn / ope ra t i on s#> .
@pref ix stn−http : <http :// pur l . org / stn /http#> .
@pref ix http : <http ://www.w3 . org /2011/ http#> .

<#platform>
a stn : Platform ;
stn :name "Facebook" ;
stn−http : baseURL <https : // graph . facebook . com/v2.4> ;
stn−http : supportsAuth stn−http :OAuth ;
stn−http : consumes stn−http :JSON ;
stn−http : produces stn−http :JSON ;
stn−ops : supports <#getAccount> ,

<#getOutConnections> ,
<#getInConnect ions> ,
<#getGroup> ,
<#getGroupMembers> ,
<#getGroupsOfUser> ,
<#getMessage> ,
<#getReceivedMessages> ,
<#getSentMessages> ,
<#postMessage> ,
<#postMessageToGroup> ,
<#de le tePost> ,
<#getFeed> ,
<#getUserFeed> ,
<#getGroupFeed> .

#
Account ope ra t i on s
#

190 Appendix A. Examples of STN Description Documents

<#fbAccountJSONMapping>
a stn−ops : Representat ion ;
stn−ops : mediaType stn−http :JSON ;
stn−ops : entityType stn : UserAccount ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " id " ;
stn−http :STNTerm stn : id ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key "name" ;
stn−http :STNTerm stn :name ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key "webs i te " ;
stn−http :STNTerm stn : swo tPro f i l e ;

] .

<#getAccount>
a stn−ops : GetUserAccount ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI " / : id ? f i e l d s=id , name , webs i te " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : UserAccountID ;
stn−http : key " : id " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput <#fbAccountJSONMapping> .

#
Connection ope ra t i on s
#

<#fbFriendsJSONMapping>
a stn−http : JSONArray ;
stn−http : key "data" ;
stn−ops : arrayOf <#fbAccountJSONMapping> .

<#getOutConnections>
a stn−ops : GetOutgoingRelat ions ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI " / : id / f r i e n d s ? f i e l d s=id , name , webs i te " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : UserAccountID ;
stn−http : key " : id " ;

A.1. Facebook 191

stn−http : paramIn stn−http : Path ;
] ;

stn−ops : hasOutput <#fbFriendsJSONMapping> .

<#getInConnect ions>
a stn−ops : GetIncomingRelat ions ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI " / : id / f r i e n d s ? f i e l d s=id , name , webs i te " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : UserAccountID ;
stn−http : key " : id " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput <#fbFriendsJSONMapping> .

#
Group ope ra t i on s
#

<#fbGroupJSONMapping>
a stn−ops : Representat ion ;
stn−ops : mediaType stn−http :JSON ;
stn−ops : entityType stn : Group ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " id " ;
stn−http :STNTerm stn : id ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key "name" ;
stn−http :STNTerm stn :name ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key "about" ;
stn−http :STNTerm stn : d e s c r i p t i o n ;

] .

<#getGroup>
a stn−ops : GetGroup ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI " / : id " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : GroupID ;
stn−http : key " : id " ;
stn−http : paramIn stn−http : Path ;

192 Appendix A. Examples of STN Description Documents

] ;
stn−ops : hasOutput <#fbGroupJSONMapping> .

<#getGroupMembers>
a stn−ops : GetGroupMembers ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI " / : id /members" ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : GroupID ;
stn−http : key " : id " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput

[a stn−http : JSONArray ;
stn−http : key "data" ;
stn−ops : arrayOf <#fbGroupJSONMapping> ;

] .

<#getGroupsOfUser>
a stn−ops : GetGroupsOfUser ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI " / : id / groups " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : UserAccountID ;
stn−http : key " : id " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput

[a stn−http : JSONArray ;
stn−http : key "data" ;
stn−ops : arrayOf <#fbGroupJSONMapping> ;

] .

#
Message ope ra t i on s
#

<#fbMessageJSONMapping>
a stn−ops : Representat ion ;
stn−ops : mediaType stn−http :JSON ;
stn−ops : entityType stn : Message ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " id " ;
stn−http : stnTerm stn : id ;

] ;
stn−ops : conta in s [

A.1. Facebook 193

a stn−http : Mapping ;
stn−http : key " from" ;
stn−http : stnTerm stn : hasSender ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " to " ;
stn−http : stnTerm stn : hasRece iver ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key "message" ;
stn−http : stnTerm stn : hasBody ;

] .

<#getMessage>
a stn−ops : GetMessage ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI " / : id " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : MessageID ;
stn−http : key " : id " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput <#fbMessageJSONMapping> .

<#getReceivedMessages>
a stn−ops : GetReceivedMessages ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI " / : id / inbox" ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : UserAccountID ;
stn−http : key " : id " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput

[a stn−http : JSONArray ;
stn−ops : arrayOf <#fbMessageJSONMapping> ;

] .

<#getSentMessages>
a stn−ops : GetSentMessages ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI " / : id /outbox" ;

] ;
stn−ops : hasRequiredInput

194 Appendix A. Examples of STN Description Documents

[a stn−ops : UserAccountID ;
stn−http : key " : id " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput

[a stn−http : JSONArray ;
stn−ops : arrayOf <#fbMessageJSONMapping> ;

] .

#
Feed ope ra t i on s
#

<#postMessage>
a stn−ops : PostMessage ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "POST" ;
http : requestURI " / : id / f e ed " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : UserAccountID ;
stn−http : key " : id " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : MessageBody ;
stn−http : key "message" ;

] ;
stn−ops : hasOutput <#fbMessageJSONMapping> .

<#postMessageToGroup>
a stn−ops : PostMessageToGroup ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "POST" ;
http : requestURI " / : groupid / f eed " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : GroupID ;
stn−http : key " : groupid " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : MessageBody ;
stn−http : key "message" ;

] ;
stn−ops : hasOutput

[a stn−http : JSONArray ;
stn−ops : arrayOf <#fbMessageJSONMapping> ;

] .

<#de le tePost>
a stn−ops : DeletePost ;
stn−ops : implementedAs

A.1. Facebook 195

[a stn−http : AuthSTNRequest ;
http :methodName "DELETE" ;
http : requestURI " / : id " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : MessageID ;
stn−http : key " : id " ;

] .

<#getFeed>
a stn−ops : GetHomeFeed ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI " / : id /home" ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : UserAccountID ;
stn−http : key " : id " ;

] ;
stn−ops : hasOutput

[a stn−http : JSONArray ;
stn−ops : arrayOf <#fbMessageJSONMapping> ;

] .

<#getUserFeed>
a stn−ops : GetUserAccountFeed ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI " / : id / f e ed " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : UserAccountID ;
stn−http : key " : id " ;

] ;
stn−ops : hasOutput

[a stn−http : JSONArray ;
stn−ops : arrayOf <#fbMessageJSONMapping> ;

] .

<#getGroupFeed>
a stn−ops : GetGroupFeed ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI " / : id / f e ed " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : GroupID ;
stn−http : key " : id " ;

] ;
stn−ops : hasOutput

[a stn−http : JSONArray ;

196 Appendix A. Examples of STN Description Documents

stn−ops : arrayOf <#fbMessageJSONMapping> ;
] .

Listing A.1: An STN description document for Facebook.

A.2 Twitter

@base <http ://www. tw i t t e r . com/> .
@pref ix stn : <http :// pur l . org / stn / core#> .
@pref ix stn−ops : <http :// pur l . org / stn / ope ra t i on s#> .
@pref ix stn−http : <http :// pur l . org / stn /http#> .
@pref ix http : <http ://www.w3 . org /2011/ http#> .

<#platform>
a stn : Platform ;
stn :name "Twitter " ;
stn−http : baseURL <https : // api . tw i t t e r . com/1.1> ;
stn−http : supportsAuth stn−http :OAuth ;
stn−ops : consumes stn−http :JSON ;
stn−ops : produces stn−http :JSON ;
stn−ops : supports <#getMyAccount> ,

<#getAccount> ,
<#getFo l lowers> ,
<#getFr iends> ,
<#fo l l ow> ,
<#unfol low> ,
<#sendDirectMessage> ,
<#postTweet> ,
<#getHomeTimeline >,
<#deleteDirectMessage> ,
<#getDirectMessage> ,
<#getDirectMessages> .

#
Account ope ra t i on s
#

<#twitterAccountJSONMapping>
a stn−ops : Representat ion ;
stn−ops : mediaType stn−http :JSON ;
stn−ops : entityType stn : UserAccount ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key "screen_name" ;
stn−http :STNTerm stn : id ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key "name" ;
stn−http :STNTerm stn :name ;

] ;

A.2. Twitter 197

stn−ops : conta in s [
a stn−http : Mapping ;
stn−http : key " d e s c r i p t i o n " ;
stn−http :STNTerm stn : d e s c r i p t i o n ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " u r l " ;
stn−http :STNTerm stn : swo tPro f i l e ;

] .

<#getMyAccount>
a stn−ops : GetMyUserAccount ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI "/ account / v e r i f y_c r ed en t i a l s . j s on " ;

] ;
stn−ops : hasOutput <#twitterAccountJSONMapping> .

<#getAccount>
a stn−ops : GetUserAccount ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI "/ us e r s /show . j son " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : UserAccountID ;
stn−http : key "screen_name" ;
stn−http : paramIn stn−http : Query ;

] ;
stn−ops : hasOutput <#twitterAccountJSONMapping> .

#
Connection ope ra t i on s
#

<#twitterFriendsJSON>
a stn−http : JSONArray ;
stn−http : key " us e r s " ;
stn−ops : arrayOf <#twitterAccountJSONMapping> .

<#getFo l lowers>
a stn−ops : GetIncomingRelat ions ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI "/ f o l l ow e r s / l i s t . j s on " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : UserAccountID ;
stn−http : key "screen_name" ;

198 Appendix A. Examples of STN Description Documents

stn−http : paramIn stn−http : Query ;
] ;

stn−ops : hasOutput <#twitterFriendsJSON> .

<#getFr iends>
a stn−ops : GetOutgoingRelat ions ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI "/ f r i e n d s / l i s t . j s on " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : UserAccountID ;
stn−http : key "screen_name" ;
stn−http : paramIn stn−http : Query ;

] ;
stn−ops : hasOutput <#twitterFriendsJSON> .

<#fo l l ow>
a stn−ops : CreateConnectionTo ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "POST" ;
http : requestURI "/ f r i e n d s h i p s / c r e a t e . j son " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : UserAccountID ;
stn−http : key "screen_name" ;
stn−http : paramIn stn−http : Body ;

] ;
stn−ops : hasOutput <#twitterAccountJSONMapping> .

<#unfol low>
a stn−ops : DeleteConnectionTo ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "POST" ;
http : requestURI "/ f r i e n d s h i p s / des t roy . j son " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : UserAccountID ;
stn−http : key "screen_name" ;
stn−http : paramIn stn−http : Body ;

] ;
stn−ops : hasOutput <#twitterAccountJSONMapping> .

#
Direc t messages and tweets
#

<#twitterDirectMessageJSONMapping>
a stn−ops : Representat ion ;
stn−ops : mediaType stn−http :JSON ;

A.2. Twitter 199

stn−ops : entityType stn : Message ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " id_str " ;
stn−http :STNTerm stn : id ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key "sender_screen_name" ;
stn−http :STNTerm stn : hasSender ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " receiver_screen_name" ;
stn−http :STNTerm stn : hasRece iver ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " text " ;
stn−http :STNTerm stn : hasBody ;

] .

<#tweetJSONMapping>
a stn−ops : Representat ion ;
stn−ops : mediaType stn−http :JSON ;
stn−ops : entityType stn : Message ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " id_str " ;
stn−http :STNTerm stn : id ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " user /screen_name" ;
stn−http :STNTerm stn : hasSender ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " text " ;
stn−http :STNTerm stn : hasBody ;

] .

<#sendDirectMessage>
a stn−ops : SendPrivateMessage ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "POST" ;
http : requestURI "/ direct_messages /new . j son " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : UserAccountID ;
stn−http : key "screen_name" ;
stn−http : paramIn stn−http : Body ;

] ;

200 Appendix A. Examples of STN Description Documents

stn−ops : hasRequiredInput [
a stn−ops : MessageBody ;
stn−http : key " text " ;
stn−http : paramIn stn−http : Body ;

] ;
stn−ops : hasOutput <#twitterDirectMessageJSONMapping> .

<#postTweet>
a stn−ops : PostMessage ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "POST" ;
http : requestURI "/ s t a t u s e s /update . j son " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : MessageBody ;
stn−http : key " s t a tu s " ;
stn−http : paramIn stn−http : Body ;

] ;
stn−ops : hasOutput <#twitterDirectMessageJSONMapping> .

<#getHomeTimeline>
a stn−ops : GetAggregatedFeed ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI "/ s t a t u s e s /home_timeline . j son " ;

] ;
stn−ops : hasOutput

[a stn−http : JSONArray ;
stn−ops : arrayOf <#tweetJSONMapping> ;

] .

<#deleteDirectMessage>
a stn−ops : DeletePr ivateMessage ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "POST" ;
http : requestURI "/ direct_messages / des t roy . j son " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : EntityID ;
stn−http : key " id " ;
stn−http : paramIn stn−http : Body ;

] ;
stn−ops : hasOutput <#twitterDirectMessageJSONMapping> .

<#getDirectMessage>
a stn−ops : GetMessage ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI "/ direct_messages /show . j son " ;

] ;

A.3. SoundCloud 201

stn−ops : hasRequiredInput [
a stn−ops : EntityID ;
stn−http : key " id " ;
stn−http : paramIn stn−http : Query ;

] ;
stn−ops : hasOutput <#twitterDirectMessageJSONMapping> .

<#getDirectMessages>
a stn−ops : GetMessages ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI "/ direct_messages . j son " ;

] ;
stn−ops : hasOutput [

a stn−http : JSONArray ;
stn−ops : arrayOf <#twitterDirectMessageJSONMapping> ;

] .

Listing A.2: An STN description document for Twitter.

A.3 SoundCloud

@base <http ://www. soundcloud . com/> .
@pref ix stn : <http :// pur l . org / stn / core#> .
@pref ix stn−ops : <http :// pur l . org / stn / ope ra t i on s#> .
@pref ix stn−http : <http :// pur l . org / stn /http#> .
@pref ix http : <http ://www.w3 . org /2011/ http#> .

<#platform>
a stn : Platform ;
stn :name "SoundCloud" ;
stn−http : baseURL <https : // api . soundcloud . com> ;
stn−http : supportsAuth stn−http :OAuth ;
stn−ops : consumes stn−http :JSON ;
stn−ops : produces stn−http :JSON ;
stn−ops : supports <#getAccount> ,

<#getInConnect ions> ,
<#getOutConnections> ,
<#fo l l ow> ,
<#unfol low> .

#
Account ope ra t i on s
#

<#soundcloudAccountJSONMapping>
a stn−ops : Representat ion ;
stn−ops : mediaType stn−http :JSON ;
stn−ops : entityType stn : UserAccount ;
stn−ops : conta in s [

202 Appendix A. Examples of STN Description Documents

a stn−http : Mapping ;
stn−http : key " id " ;
stn−http :STNTerm stn : id ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " full_name" ;
stn−http :STNTerm stn :name ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " d e s c r i p t i o n " ;
stn−http :STNTerm stn : d e s c r i p t i o n ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key "webs i te " ;
stn−http :STNTerm stn : swo tPro f i l e ;

] .

<#getAccount>
a stn−ops : GetUserAccount ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI "/ us e r s / : id " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : UserAccountID ;
stn−http : key " : id " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput <#soundcloudAccountJSONMapping> .

#
Connection ope ra t i on s
#

<#soundcloudFriendsJSON>
a stn−http : JSONArray ;
stn−ops : arrayOf <#soundcloudAccountJSONMapping> .

<#getInConnect ions>
a stn−ops : GetIncomingRelat ions ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI "/ us e r s / : id / f o l l ow e r s " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : UserAccountID ;
stn−http : key " : id " ;
stn−http : paramIn stn−http : Path ;

A.3. SoundCloud 203

] ;
stn−ops : hasOutput <#soundcloudFriendsJSON> .

<#getOutConnections>
a stn−ops : GetOutgoingRelat ions ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI "/ us e r s / : id / f o l l ow i n g s " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : UserAccountID ;
stn−http : key " : id " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput <#soundcloudFriendsJSON> .

<#fo l l ow>
a stn−ops : CreateRelat ionTo ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "PUT" ;
http : requestURI "/ us e r s / : id1 / f o l l ow i n g s / : id2 " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : UserAccountID ;
stn−http : key " : id1 " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : TargetUserAccountID ;
stn−http : key " : id2 " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput <#soundcloudAccountJSONMapping> .

<#unfol low>
a stn−ops : DeleteRelat ionTo ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "DELETE" ;
http : requestURI "/ us e r s / : id1 / f o l l ow i n g s / : id2 " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : UserAccountID ;
stn−http : key " : id1 " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : TargetUserAccountID ;
stn−http : key " : id2 " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput <#soundcloudAccountJSONMapping> .

204 Appendix A. Examples of STN Description Documents

Listing A.3: An STN description document for SoundCloud.

A.4 Dweet.io

@base <http ://www. dweet . i o/> .
@pre f ix stn : <http :// pur l . org / stn / core#> .
@pref ix stn−ops : <http :// pur l . org / stn / ope ra t i on s#> .
@pref ix stn−http : <http :// pur l . org / stn /http#> .
@pref ix http : <http ://www.w3 . org /2011/ http#> .

<#platform>
a stn : Platform ;
stn :name "dweet . i o " ;
stn−http : baseURL <https : // dweet . io> ;
stn−ops : consumes stn−http :JSON ;
stn−ops : produces stn−http :JSON ;
stn−ops : supports <#createAccount> ,

<#postDweet> ,
<#getDweets> .

<#dweetJSONMapping>
a stn−ops : Representat ion ;
stn−ops : mediaType stn−http :JSON ;
stn−ops : entityType stn : DataObject ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " created " ;
stn−http :STNTerm stn : id ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " th ing " ;
stn−http :STNTerm stn : createdBy ;

] ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " content " ;
stn−http :STNTerm stn : data ;

] .

<#createAccount>
a stn−ops : CreateUserAccount ;
stn−ops : implementedAs

[a stn−http : STNRequest ;
http :methodName "GET" ;
http : requestURI "/dweet/ f o r / : accountId " ;

] ;
stn−ops : hasRequiredInput

[a stn−http : UserAccountID ;

A.4. Dweet.io 205

stn−http : key " : accountId " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput

[a stn−ops : Representat ion ;
stn−ops : mediaType stn−http :JSON ;
stn−ops : entityType stn : UserAccount ;
stn−http : key "with" ;
stn−ops : conta in s [

a stn−http : Mapping ;
stn−http : key " th ing " ;
stn−http :STNTerm stn : createdBy ;

] ;
] .

<#postDweet>
a stn−ops : PostDataToUserAccountFeed ;
stn−ops : implementedAs [

a stn−http : STNRequest ;
http :methodName "POST" ;
http : requestURI "/dweet/ f o r / : accountId " ;

] ;
stn−ops : hasRequiredInput [

a stn−http : UserAccountID ;
stn−http : key " : accountId " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : Representat ion ;
stn−ops : mediaType stn−http :JSON ;
stn−ops : entityType stn : DataObject ;
stn−http : paramIn stn−http : Body ;

] ;
stn−ops : hasOutput [

a stn−ops : Representat ion ;
stn−http : key "with" ;
stn−ops : r ep r e s en ta t i onOf <#dweetJSONMapping> ;

] .

<#getDweets>
a stn−ops : GetUserAccountFeed ;
stn−ops : implementedAs [

a stn−http : STNRequest ;
http :methodName "GET" ;
http : requestURI "/ get /dweets / f o r / : accountId " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : UserAccountID ;
stn−http : key " : accountId " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput [

a stn−http : JSONArray ;
stn−http : key "with" ;

206 Appendix A. Examples of STN Description Documents

stn−ops : arrayOf <#dweetJSONMapping> ;
] .

Listing A.4: An STN description document for Dweet.io.

A.5 ThingsNet

@base <http ://www. th ing sne t . com/> .
@pref ix stn : <http :// pur l . org / stn / core#> .
@pref ix stn−ops : <http :// pur l . org / stn / ope ra t i on s#> .
@pref ix stn−http : <http :// pur l . org / stn /http#> .
@pref ix http : <http ://www.w3 . org /2011/ http#> .
@pref ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .
@pref ix format : <http ://www.w3 . org /ns/ formats/> .

<#platform>
a stn : STNPlatform ;
stn :name "ThingsNet" ;
stn−http : baseURL <http :// l o c a l h o s t :9000> ;
stn−http : supportsAuth stn−http :WebID ;
stn−http : consumes format : Turt le ;
stn−http : produces format : Turt le ;
stn−ops : supports <#createAccount> ,

<#getAccount> ,
<#getAccountForAgent> ,
<#deleteAccount> ,
<#createConnectionTo> ,
<#getOutConnections> ,
<#getInConnect ions> ,
<#deleteConnectionTo> ,
<#sendMessage> ,
<#getMessage> ,
<#getMessages> ,
<#deleteMessage> .

#
Account ope ra t i on s
#

<#createAccount>
a stn−ops : CreateUserAccount ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "POST" ;
http : requestURI "/ us e r s " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : Soc ia lTh ingClas s ;
] ;

stn−ops : hasRequiredInput [

A.5. ThingsNet 207

a stn−ops : SocialThingOwner ;
] ;

stn−ops : hasRequiredInput [
a stn−ops : DisplayedName ;

] ;
stn−ops : hasInput [

a stn−ops : Des c r ip t i on ;
] ;

stn−ops : hasOutput [
a stn−ops : Representat ion ;
stn−ops : mediaType format : Turt le ;
stn−ops : entityType stn : UserAccount ;

] .

<#getAccount>
a stn−ops : GetUserAccount ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI " : accountUri " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : UserAccountURI ;
stn−http : key " : accountUri " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput

[a stn−ops : Representat ion ;
stn−ops : mediaType format : Turt le ;
stn−ops : entityType stn : UserAccount ;

] .

<#getAccountForAgent>
a stn−ops :WhoIsAgent ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI "/ us e r s " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : AgentURI ;
stn−http : key " agentUri " ;
stn−http : paramIn stn−http : Query ;

] ;
stn−ops : hasOutput [

a stn−ops : Representat ion ;
stn−ops : mediaType format : Turt le ;
stn−ops : entityType stn : UserAccount ;

] .

<#deleteAccount>
a stn−ops : DeleteUserAccount ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;

208 Appendix A. Examples of STN Description Documents

http :methodName "DELETE" ;
http : requestURI "/ us e r s " ;

] ;
stn−ops : hasOutput [

a stn−ops : Representat ion ;
stn−ops : mediaType format : Turt le ;
stn−ops : entityType stn : UserAccount ;

] .

#
Connection ope ra t i on s
#

<#createConnectionTo>
a stn−ops : CreateRelat ionTo ;
stn−ops : implementedAs [

a stn−http : AuthSTNRequest ;
http :methodName "POST" ;
http : requestURI "/ connect ions " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : AgentURI ;
] ;

stn−ops : hasOutput [
a stn−ops : Representat ion ;
stn−ops : mediaType format : Turt le ;
stn−ops : entityType stn : UserAccount ;

] .

<#getOutConnections>
a stn−ops : GetOutgoingRelat ions ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI "/ connect ions /out" ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : UserAccountURI ;
stn−http : key " accountUri " ;
stn−http : paramIn stn−http : Query ;

] ;
stn−ops : hasOutput

[a stn−ops : Representat ion ;
stn−ops : mediaType format : Turt le ;
stn−ops : arrayOf stn : UserAccount ;

] .

<#getInConnect ions>
a stn−ops : GetIncomingRelat ions ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;

A.5. ThingsNet 209

http : requestURI "/ connect ions / in " ;
] ;

stn−ops : hasRequiredInput
[a stn−ops : UserAccountURI ;

stn−http : key " accountUri " ;
stn−http : paramIn stn−http : Query ;

] ;
stn−ops : hasOutput

[a stn−ops : Representat ion ;
stn−ops : mediaType format : Turt le ;
stn−ops : arrayOf stn : UserAccount ;

] .

<#deleteConnectionTo>
a stn−ops : DeleteRelat ionTo ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "DELETE" ;
http : requestURI "/ connect ions " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : AgentURI ;
stn−http : key " agentUri " ;
stn−http : paramIn stn−http : Query ;

] ;
stn−ops : hasOutput

[a stn−ops : Representat ion ;
stn−ops : mediaType format : Turt le ;
stn−ops : entityType stn : UserAccount ;

] .

#
Message ope ra t i on s
#

<#sendMessage>
a stn−ops : SendMessage ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "POST" ;
http : requestURI "/messages " ;

] ;
stn−ops : hasRequiredInput [

a stn−ops : UserAccountURI ;
] ;

stn−ops : hasInput [
a stn−ops : MessageURI ;

] ;
stn−ops : hasInput [

a stn−ops : Subject ;
] ;

stn−ops : hasInput [

210 Appendix A. Examples of STN Description Documents

a stn−ops : MessageBody ;
] ;

stn−ops : hasOutput [
a stn−ops : Representat ion ;
stn−ops : mediaType format : Turt le ;
stn−ops : entityType stn : Message ;

] .

<#deleteMessage>
a stn−ops : DeletePr ivateMessage ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "DELETE" ;
http : requestURI " : messageUri " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : MessageURI ;
stn−http : key "messageUri " ;
stn−http : paramIn stn−http : Path ;

] .

<#getMessage>
a stn−ops : GetMessage ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI " : messageUri " ;

] ;
stn−ops : hasRequiredInput

[a stn−ops : MessageURI ;
stn−http : key "messageUri " ;
stn−http : paramIn stn−http : Path ;

] ;
stn−ops : hasOutput

[a stn−ops : Representat ion ;
stn−ops : mediaType format : Turt le ;
stn−ops : entityType stn : Message ;

] .

<#getMessages>
a stn−ops : GetMessages ;
stn−ops : implementedAs

[a stn−http : AuthSTNRequest ;
http :methodName "GET" ;
http : requestURI "/messages " ;

] ;
stn−ops : hasOutput

[a stn−ops : Representat ion ;
stn−ops : mediaType format : Turt le ;
stn−ops : arrayOf stn : Message ;

] .

Listing A.5: An STN description document for ThingsNet.

Appendix B

Normative Organizations for
Home Automation

In this appendix, we present the complete specification of the MOISE+ organisa-
tion [Hubner 2007] we have created to implement the “A welcoming home” scenario
(see Section 5.1.4). Our implementation is discussed in detail in Section 9.5.

The organisational specification is shown in Listing B.1. It defines the structural,
functional and normative dimensions of an organisaton for David’s social things.

The structural specification defines the roles available within the organisation,
links among those roles, and a group for David’s social things.

The functional specification defines a scheme to achieve the goal of setting up
David’s home for his arrival. This goal is decomposed in multiple subgoals grouped
in missions.

The normative specification defines five norms that assign missions defined by
the functional specification to roles defined by the structural specification by means
of obligations.

<?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>

<?xml−s t y l e s h e e t h r e f="http :// moise . s ou r c e f o r g e . net /xml/ os . x s l " type="
text / x s l " ?>

<organ i s a t i ona l−s p e c i f i c a t i o n
id="home"
os−ve r s i on=" 0 .8 "

xmlns=’ http :// moise . s ou r c e f o r g e . net / os ’
xmlns : x s i= ’ http ://www.w3 . org /2001/XMLSchema−i n s t anc e ’
x s i : schemaLocation=’ http :// moise . s ou r c e f o r g e . net / os

http :// moise . s ou r c e f o r g e . net /xml/ os . xsd ’ >

<s t ru c tu r a l−s p e c i f i c a t i o n >

<ro l e−d e f i n i t i o n s >
<r o l e id=" soc i a l_th ing " />
<ro l e id=" car " > <extends r o l e=" soc i a l_th ing "/> </ro l e>
<r o l e id="vacuum_cleaner" > <extends r o l e=" soc i a l_th ing "/> </ro l e>
<r o l e id=" thermostat " > <extends r o l e=" soc i a l_th ing "/> </ro l e>
<r o l e id=" light_manager " > <extends r o l e=" soc i a l_th ing "/> </ro l e>
<r o l e id=" cu r t a i n s " > <extends r o l e=" light_manager "/> </ro l e>

212 Appendix B. Normative Organizations for Home Automation

<ro l e id=" l i g h t s " > <extends r o l e=" light_manager "/> </ro l e>
<r o l e id=" speaker s " > <extends r o l e=" soc i a l_th ing "/> </ro l e>

</ro l e−d e f i n i t i o n s >

<group−s p e c i f i c a t i o n id="home_group">
<ro l e s >
<r o l e id=" car " min="1"/>
<ro l e id="vacuum_cleaner" min="1"/>
<ro l e id=" thermostat " min="1"/>
<ro l e id=" light_manager " min="1"/>
<ro l e id=" speaker s " min="1"/>

</ro l e s >

<l ink s >
<l i n k from=" soc i a l_th ing " to=" soc i a l_th ing " type="communication"

scope=" int ra−group" />
</l i nk s >

</group−s p e c i f i c a t i o n >
</s t ru c tu r a l−s p e c i f i c a t i o n >

<func t i ona l−s p e c i f i c a t i o n >
<scheme id="welcome_home_scheme">

<goa l id="warm_welcoming">
<plan operator=" sequence ">

<goa l id="announce_departure"/>
<goa l id="prepare_home_ambient">

<plan operator=" p a r a l l e l ">
<goa l id="vacuum_house" t t f="20 minutes " ds="Vacuum the

house . "/>
<goa l id="set_ambient_temperature" t t f="20 minutes " ds="

Prepare a warm house , l i t e r a l l y . "/>
<goa l id=" prepare_ar r iva l ">

<plan operator=" sequence ">
<goa l id=" announce_arr ival "/>
<goa l id="make_last_preperations ">

<plan operator=" p a r a l l e l ">
<goa l id=" set_ambient_l ight ing "/>
<goa l id="set_ambient_music"/>

</plan>
</goal>

</plan>
</goal>

</plan>
</goal>

</plan>
</goal>

<!−− <miss ion id="m1" min="1" max="1">
<goa l id="warm_welcoming"/>
<goa l id="announce_departure"/>
<goa l id="prepare_home_ambient"/>
<goa l id=" prepare_ar r iva l "/>
<goa l id=" announce_arr ival "/>
<goa l id="make_last_preperations "/>

213

</miss ion> −−>

<miss ion id="m1" min="1" max="1">
<goa l id="announce_departure"/>
<goa l id=" announce_arr ival "/>
<goa l id="warm_welcoming"/>

</miss ion>

<miss ion id="m2" min="1" max="1">
<goa l id="vacuum_house"/>

</miss ion>

<miss ion id="m3" min="1" max="1">
<goa l id="set_ambient_temperature"/>

</miss ion>

<miss ion id="m4" min="1">
<goa l id=" set_ambient_l ight ing "/>

</miss ion>

<miss ion id="m5" min="1" max="1">
<goa l id="set_ambient_music"/>

</miss ion>
</scheme>

</func t i ona l−s p e c i f i c a t i o n >

<normative−s p e c i f i c a t i o n >
<norm id="norm1" type=" ob l i g a t i o n " r o l e=" car " miss ion="m1"/>
<norm id="norm2" type=" ob l i g a t i o n " r o l e="vacuum_cleaner" miss ion="m2"

/>
<norm id="norm3" type=" ob l i g a t i o n " r o l e=" thermostat " miss ion="m3"/>
<norm id="norm4" type=" ob l i g a t i o n " r o l e=" light_manager " miss ion="m4"/>
<norm id="norm5" type=" ob l i g a t i o n " r o l e=" speaker s " miss ion="m5"/>

</normative−s p e c i f i c a t i o n >

</o rgan i s a t i ona l−s p e c i f i c a t i o n >

Listing B.1: A MOISE+ organisation for automating David’s home.

Bibliography

[Andrighetto 2013] Giulia Andrighetto, Guido Governatori, Pablo Noriega and
Leendert WN van der Torre. Normative multi-agent systems. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik GmbH, 2013. (Cited on pages 51
and 181.)

[Argente 2013] Estefanía Argente, Olivier Boissier, Sergio Esparcia, Jana Görmer,
Kristi Kirikal and Kuldar Taveter. Describing Agent Organisations. In
Agreement Technologies, pages 253–275. Springer, 2013. (Cited on pages 47
and 52.)

[Armbrust 2010] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoicaet al. A view of cloud computing. Communications of the
ACM, vol. 53, no. 4, pages 50–58, 2010. (Cited on page 82.)

[Asl 2013] Hamid Zargari Asl, Antonio Iera, Luigi Atzori and Giacomo Morabito.
How often social objects meet each other? Analysis of the properties of a
social network of IoT devices based on real data. In Global Communica-
tions Conference (GLOBECOM), 2013 IEEE, pages 2804–2809. IEEE, 2013.
(Cited on page 41.)

[Atzori 2010] Luigi Atzori, Antonio Iera and Giacomo Morabito. The internet of
things: A survey. Computer networks, vol. 54, no. 15, pages 2787–2805,
2010. (Cited on page 23.)

[Atzori 2012] Luigi Atzori, Antonio Iera, Giacomo Morabito and Michele Nitti. The
social internet of things (siot)–when social networks meet the internet of
things: Concept, architecture and network characterization. Computer Net-
works, vol. 56, no. 16, pages 3594–3608, 2012. (Cited on pages 39, 41 and 42.)

[Austin 1962] John L Austin. How to do things with words, 1962. (Cited on page 48.)

[Balke 2013] Tina Balke, Célia da Costa Pereira, Frank Dignum, Emiliano Lorini,
Antonino Rotolo, Wamberto Vasconcelos and Serena Villata. Norms in MAS:
Definitions and Related Concepts. Normative Multi-Agent Systems, vol. 4,
pages 1–31, 2013. (Cited on page 51.)

[Beckett 2008] David Beckett and Tim Berners-Lee. Turtle - Terse RDF Triple
Language, W3C Team Submission 14 January 2008. W3C team submission,
World Wide Web Consortium (W3C), January 14 2008. (Cited on pages 32,
103, 106 and 112.)

[Berners-Lee 2001] Tim Berners-Lee, James Hendler, Ora Lassilaet al. The semantic
web. Scientific american, vol. 284, no. 5, pages 28–37, 2001. (Cited on
page 20.)

216 Bibliography

[Berners-Lee 2005] T. Berners-Lee, R. Fielding and L. Masinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986 (INTERNET STANDARD),
January 2005. Updated by RFCs 6874, 7320. (Cited on pages 11, 111
and 116.)

[Berners-Lee 2006] Tim Berners-Lee. Linked data-design issues. 2006. (Cited on
page 21.)

[Berners-Lee 2009] T Berners-Lee. Socially aware cloud storage. W3C Design
Note http://www.w3.org/DesignIssues/CloudStorage.html, 2009. (Cited on
pages 16 and 17.)

[Berthet 1992] Sabine Berthet, Yves Demazeau and Oliver Boissier. Knowing each
other better. In Proceedings of the 11th International Workshop on Dis-
tributed Artificial Intelligence, pages 23–42. Glen Arbor USA, 1992. (Cited
on page 50.)

[Blackstock 2010] Michael Blackstock, Nima Kaviani, Rodger Lea and Adrian Fri-
day. MAGIC Broker 2: An open and extensible platform for the Internet of
Things. In Internet of Things (IOT), 2010, pages 1–8. IEEE, 2010. (Cited
on page 39.)

[Blackstock 2011] Michael Blackstock, Rodger Lea and Adrian Friday. Uniting on-
line social networks with places and things. In Proceedings of the Second
International Workshop on Web of Things, page 5. ACM, 2011. (Cited on
pages 35 and 40.)

[Blackstock 2012] Michael Blackstock and Rodger Lea. IoT mashups with the
WoTKit. In Internet of Things (IOT), 2012 3rd International Conference
on the, pages 159–166. IEEE, 2012. (Cited on pages 2, 38 and 39.)

[Blackstock 2013] Michael Blackstock and Rodger Lea. Toward interoperability in a
web of things. In Proceedings of the 2013 ACM conference on Pervasive and
ubiquitous computing adjunct publication, pages 1565–1574. ACM, 2013.
(Cited on pages 30 and 31.)

[Blackstock 2014a] Michael Blackstock and Rodger Lea. IoT interoperability: A
hub-based approach. In Internet of Things (IOT), 2014 International Con-
ference on the, pages 79–84. IEEE, 2014. (Cited on pages 1, 28, 30, 31, 32
and 180.)

[Blackstock 2014b] Michael Blackstock and Rodger Lea. Towards a distributed data
flow platform for the web of things. 2014. (Cited on page 38.)

[Blumenthal 2001] Marjory S Blumenthal and David D Clark. Rethinking the design
of the Internet: the end-to-end arguments vs. the brave new world. ACM
Transactions on Internet Technology (TOIT), vol. 1, no. 1, pages 70–109,
2001. (Cited on page 25.)

Bibliography 217

[Boissier 2007] Olivier Boissier, Jomi Fred Hübner and Jaime Simão Sichman. Or-
ganization oriented programming: From closed to open organizations. In En-
gineering Societies in the Agents World VII, pages 86–105. Springer, 2007.
(Cited on page 47.)

[Boissier 2013] Olivier Boissier, Rafael H Bordini, Jomi F Hübner, Alessandro Ricci
and Andrea Santi. Multi-agent oriented programming with JaCaMo. Science
of Computer Programming, vol. 78, no. 6, pages 747–761, 2013. (Cited on
pages 46, 47, 48, 73, 154 and 172.)

[Bojars 2010] Uldis Bojars and John G. Breslin. SIOC Core Ontology Specification.
http://rdfs.org/sioc/spec/, March 2010. Accessed: 2015-02-09. (Cited
on pages 18 and 100.)

[Bonomi 2012] Flavio Bonomi, Rodolfo Milito, Jiang Zhu and Sateesh Addepalli.
Fog computing and its role in the internet of things. In Proceedings of the
first edition of the MCC workshop on Mobile cloud computing, pages 13–16.
ACM, 2012. (Cited on page 82.)

[Bordini 2005] Rafael H Bordini, Mehdi Dastani, Jürgen Dix and A El Fallah
Seghrouchni. Multi-agent programming. Springer, 2005. (Cited on page 47.)

[Bordini 2006] Rafael H Bordini and Jomi F Hübner. BDI agent programming in
AgentSpeak using Jason. In Computational logic in multi-agent systems,
pages 143–164. Springer, 2006. (Cited on page 155.)

[Bordini 2007] Rafael H Bordini, Jomi Fred Hübner and Michael Wooldridge. Pro-
gramming multi-agent systems in agentspeak using jason, volume 8. John
Wiley & Sons, 2007. (Cited on pages 46, 49, 73, 154, 155, 156, 158, 160, 163,
164 and 165.)

[Bormann 2013] C. Bormann and P. Hoffman. Concise Binary Object Representa-
tion (CBOR). RFC 7049 (Proposed Standard), October 2013. (Cited on
page 112.)

[Bormann 2014] C. Bormann, M. Ersue and A. Keranen. Terminology for
Constrained-Node Networks. RFC 7228 (Informational), May 2014. (Cited
on page 25.)

[Bratman 1988] Michael E. Bratman, David Israel and Martha E. Pollack. Plans
and resource-bounded practical reasoning. Computational intelligence, vol. 4,
no. 4, pages 349–355, 1988. (Cited on page 155.)

[Bray 2014] T. Bray. The JavaScript Object Notation (JSON) Data Interchange
Format. RFC 7159 (Proposed Standard), March 2014. (Cited on pages 12,
32, 109, 112, 117, 128 and 133.)

[Breslin 2009] John Breslin, Alexandre Passant and Stefan Decker. The social se-
mantic web. Springer Science & Business Media, 2009. (Cited on page 20.)

http://rdfs.org/sioc/spec/

218 Bibliography

[Brickley 2004] Dan Brickley and Ramanathan V. Guha. RDF Vocabulary Descrip-
tion Language 1.0: RDF Schema, W3C Recommendation 10 February 2004.
W3C Recommendation, World Wide Web Consortium (W3C), February 10
2004. (Cited on page 21.)

[Brickley 2014] Dan Brickley and Libby Miller. FOAF vocabulary specification
0.99. http://xmlns.com/foaf/spec/, January 2014. Accessed: 2015-02-
09. (Cited on pages 18, 83, 100, 105 and 149.)

[Broll 2009] Gregor Broll, Enrico Rukzio, Massimo Paolucci, Matthias Wagner, Al-
brecht Schmidt and Heinrich Hussmann. Perci: Pervasive service interaction
with the internet of things. Internet Computing, IEEE, vol. 13, no. 6, pages
74–81, 2009. (Cited on pages 33 and 34.)

[Bruber 1993] T Bruber. A translation approach to portable ontology specification.
Knowledge Acquisition, vol. 5, pages 199–220, 1993. (Cited on page 20.)

[Brush 2011] AJ Brush, Bongshin Lee, Ratul Mahajan, Sharad Agarwal, Stefan
Saroiu and Colin Dixon. Home automation in the wild: challenges and op-
portunities. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 2115–2124. ACM, 2011. (Cited on pages 2
and 33.)

[Carabelea 2005] Cosmin Carabelea, Olivier Boissier and Cristiano Castelfranchi.
Using social power to enable agents to reason about being part of a group. In
Engineering Societies in the Agents World V, pages 166–177. Springer, 2005.
(Cited on page 50.)

[Castelfranchi 1992] Cristiano Castelfranchi, Maria Miceli and Amedeo Cesta. De-
pendence relations among autonomous agents. Decentralized AI, vol. 3, pages
215–227, 1992. (Cited on page 50.)

[Ciortea 2012] Andrei Ciortea, Yann Krupa and Laurent Vercouter. Designing
privacy-aware social networks: A multi-agent approach. In 2nd International
Conference on Web Intelligence, Mining and Semantics, WIMS ’12, Craiova,
Romania, June 6-8, 2012, pages 8:1–8:8. ACM, 2012. (Cited on page 73.)

[Colistra 2014] Giuseppe Colistra, Virginia Pilloni and Luigi Atzori. The problem of
task allocation in the Internet of Things and the consensus-based approach.
Computer Networks, vol. 73, pages 98–111, 2014. (Cited on page 41.)

[Cooper 2008] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley and
W. Polk. Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. RFC 5280 (Proposed Standard), May 2008.
Updated by RFC 6818. (Cited on page 17.)

[Coutinho 2005] Luciano R Coutinho, Jaime S Sichman, Olivier Boissieret al. Mod-
eling organization in mas: A comparison of models. In First Workshop on

http://xmlns.com/foaf/spec/

Bibliography 219

Software Engineering for Agent-oriented Systems, pages 1–10, 2005. (Cited
on page 53.)

[Cyganiak 2014] Richard Cyganiak, David Wood and Markus Lanthaler. RDF 1.1
Concepts and Abstract Syntax, W3C Recommendation 25 February 2014.
W3C Recommendation, World Wide Web Consortium (W3C), February 25
2014. (Cited on pages 20 and 21.)

[Dastani 2008] Mehdi Dastani. 2APL: a practical agent programming language. Au-
tonomous agents and multi-agent systems, vol. 16, no. 3, pages 214–248,
2008. (Cited on page 46.)

[Davis 1983] Randall Davis and Reid G Smith. Negotiation as a metaphor for dis-
tributed problem solving. Artificial intelligence, vol. 20, no. 1, pages 63–109,
1983. (Cited on page 49.)

[Demazeau 1995] Yves Demazeau. From interactions to collective behaviour in
agent-based systems. In In: Proceedings of the 1st. European Conference on
Cognitive Science. Saint-Malo. Citeseer, 1995. (Cited on pages 46 and 47.)

[Derthick 2013] Katie Derthick, James Scott, Nicolas Villar and Christian Winkler.
Exploring smartphone-based web user interfaces for appliances. In Proceed-
ings of the 15th international conference on Human-computer interaction
with mobile devices and services, pages 227–236. ACM, 2013. (Cited on
pages 33 and 34.)

[Dignum 2005] Virginia Dignum, Javier Vázquez-Salceda and Frank Dignum. Omni:
Introducing social structure, norms and ontologies into agent organizations.
In Programming multi-agent systems, pages 181–198. Springer, 2005. (Cited
on page 52.)

[Dunkels 2009] Adam Dunkelset al. Efficient application integration in IP-based
sensor networks. In Proceedings of the First ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings, pages 43–48. ACM, 2009.
(Cited on page 25.)

[Dusseault 2010] L. Dusseault and J. Snell. PATCH Method for HTTP. RFC 5789
(Proposed Standard), March 2010. (Cited on pages 21, 22 and 94.)

[Esteva 2002] Marc Esteva, David De La Cruz and Carles Sierra. ISLANDER: an
electronic institutions editor. In Proceedings of the first international joint
conference on Autonomous agents and multiagent systems: part 3, pages
1045–1052. ACM, 2002. (Cited on page 52.)

[Ferber 1998] Jacques Ferber and Olivier Gutknecht. A meta-model for the analysis
and design of organizations in multi-agent systems. In Multi Agent Systems,
1998. Proceedings. International Conference on, pages 128–135. IEEE, 1998.
(Cited on page 52.)

220 Bibliography

[Fielding 2000] Roy Thomas Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis, University of California,
Irvine, 2000. (Cited on page 10.)

[Fielding 2008] Roy T Fielding. REST APIs must be hypertext-driven, October
2008. [Online; posted 20-October-2008]. (Cited on page 12.)

[Fielding 2014a] R. Fielding and J. Reschke. Hypertext Transfer Protocol
(HTTP/1.1): Authentication. RFC 7235 (Proposed Standard), June 2014.
(Cited on pages 16, 104 and 116.)

[Fielding 2014b] R. Fielding and J. Reschke. Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing. RFC 7230 (Proposed Standard),
June 2014. (Cited on page 21.)

[Fielding 2014c] R. Fielding and J. Reschke. Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. RFC 7231 (Proposed Standard), June
2014. (Cited on pages 11, 12, 21, 22, 94, 112, 114 and 182.)

[Finin 1995] Tim Finin, Yannis Labrou and James Mayfield. KQML as an agent
communication language. 1995. (Cited on page 49.)

[Formo 2012] Joakim Formo. A Social Web of Things, 2012. (Cited on pages 2, 33,
35 and 39.)

[Fornara 2002] Nicoletta Fornara and Marco Colombetti. Operational specification
of a commitment-based agent communication language. In Proceedings of the
first international joint conference on Autonomous agents and multiagent
systems: part 2, pages 536–542. ACM, 2002. (Cited on page 49.)

[Gregorio 2007] J. Gregorio and B. de hOra. The Atom Publishing Protocol. RFC
5023 (Proposed Standard), October 2007. (Cited on page 21.)

[Guinard 2009] Dominique Guinard, Vlad Trifa, Thomas Pham and Olivier Liechti.
Towards physical mashups in the web of things. In Networked Sensing Sys-
tems (INSS), 2009 Sixth International Conference on, pages 1–4. IEEE, 2009.
(Cited on pages 1 and 37.)

[Guinard 2010a] Dominique Guinard, Mathias Fischer and Vlad Trifa. Sharing us-
ing social networks in a composable web of things. In Pervasive Computing
and Communications Workshops (PERCOM Workshops), 2010 8th IEEE In-
ternational Conference on, pages 702–707. IEEE, 2010. (Cited on page 39.)

[Guinard 2010b] Dominique Guinard, Vlad Trifa and Erik Wilde. A resource ori-
ented architecture for the web of things. In Internet of Things (IOT), 2010,
pages 1–8. IEEE, 2010. (Cited on pages 1, 2, 23, 24 and 25.)

Bibliography 221

[Guinard 2011a] Dominique Guinard. A Web of things application architecture. PhD
thesis, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 19891,
2011, 2011. (Cited on pages 23, 24, 36 and 38.)

[Guinard 2011b] Dominique Guinard, Christian Floerkemeier and Sanjay Sarma.
Cloud computing, REST and mashups to simplify RFID application develop-
ment and deployment. In Proceedings of the Second International Workshop
on Web of Things, page 9. ACM, 2011. (Cited on page 38.)

[Halpin 2010] Harry Halpin and Mischa Tuffield. A Standards-based, Open and
Privacy-aware Social Web. W3C Social Web Incubator Group Report 6th
December, 2010. (Cited on pages 2, 13, 14, 15, 16, 17 and 18.)

[Hammer-Lahav 2010] E. Hammer-Lahav. The OAuth 1.0 Protocol. RFC 5849 (In-
formational), April 2010. Obsoleted by RFC 6749. (Cited on pages 134
and 140.)

[Hardt 2012] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749 (Pro-
posed Standard), October 2012. (Cited on pages 16, 129, 132 and 140.)

[Hardy 2010] Robert Hardy, Enrico Rukzio, Paul Holleis and Matthias Wagner. Mo-
bile interaction with static and dynamic NFC-based displays. In Proceedings
of the 12th international conference on Human computer interaction with
mobile devices and services, pages 123–132. ACM, 2010. (Cited on page 34.)

[Hartke 2015] K. Hartke. Observing Resources in the Constrained Application Pro-
tocol (CoAP). RFC 7641 (Proposed Standard), September 2015. (Cited on
page 113.)

[Holmquist 2001] Lars Erik Holmquist, Friedemann Mattern, Bernt Schiele, Pet-
teri Alahuhta, Michael Beigl and Hans-W Gellersen. Smart-its friends: A
technique for users to easily establish connections between smart artefacts.
In Ubicomp 2001: Ubiquitous Computing, pages 116–122. Springer, 2001.
(Cited on pages 34 and 40.)

[Hubner 2007] Jomi F Hubner, Jaime S Sichman and Olivier Boissier. Developing
organised multiagent systems using the MOISE+ model: programming issues
at the system and agent levels. International Journal of Agent-Oriented Soft-
ware Engineering, vol. 1, no. 3-4, pages 370–395, 2007. (Cited on pages 52,
154, 171, 172 and 211.)

[Huhns 2001] Michael N Huhns. Interaction-oriented programming. In Agent-
Oriented Software Engineering, pages 29–44. Springer, 2001. (Cited on
page 47.)

[Hui 2008] Jonathan W Hui and David E Culler. IP is dead, long live IP for wireless
sensor networks. In Proceedings of the 6th ACM conference on Embedded
network sensor systems, pages 15–28. ACM, 2008. (Cited on page 25.)

222 Bibliography

[Hui 2011] J. Hui and P. Thubert. Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks. RFC 6282 (Proposed Standard), September
2011. (Cited on page 1.)

[Ishaq 2013] Isam Ishaq, David Carels, Girum K Teklemariam, Jeroen Hoebeke,
Floris Van den Abeele, Eli De Poorter, Ingrid Moerman and Piet Demeester.
IETF standardization in the field of the internet of things (IoT): a survey.
Journal of Sensor and Actuator Networks, vol. 2, no. 2, pages 235–287, 2013.
(Cited on pages 1 and 30.)

[Jacobs 2004] Ian Jacobs and Norman Walsh. Architecture of the World Wide Web,
Volume One, W3C Recommendation 15 December 2004. W3C Recommen-
dation, World Wide Web Consortium (W3C), December 15 2004. (Cited on
pages 10 and 21.)

[Jennings 1998] Nicholas R Jennings and Michael Wooldridge. Applications of in-
telligent agents. In Agent technology, pages 3–28. Springer, 1998. (Cited on
page 46.)

[Jøsang 2007] Audun Jøsang, Roslan Ismail and Colin Boyd. A survey of trust and
reputation systems for online service provision. Decision support systems,
vol. 43, no. 2, pages 618–644, 2007. (Cited on page 52.)

[Jøsang 2009] Audun Jøsang and Jennifer Golbeck. Challenges for robust trust and
reputation systems. In Proceedings of the 5th International Workshop on
Security and Trust Management (SMT 2009), Saint Malo, France, 2009.
(Cited on page 52.)

[Kindberg 2002] Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Deb-
bie Caswell, Philippe Debaty, Gita Gopal, Marcos Frid, Venky Krishnan,
Howard Morriset al. People, places, things: Web presence for the real world.
Mobile Networks and Applications, vol. 7, no. 5, pages 365–376, 2002. (Cited
on pages 23 and 35.)

[Kleinfeld 2014] Robert Kleinfeld, Lukasz Radziwonowicz and Charalampos
Doukas. glue. things–a Mashup Platform for wiring the Internet of Things
with the Internet of Services. 2014. (Cited on pages 2 and 38.)

[Koch 2011] Johannes Koch, Carlos A Velasco and Philip Ackermann. HTTP Vo-
cabulary in RDF 1.0. http://www.w3.org/TR/HTTP-in-RDF10/, May 2011.
Accessed: 2015-09-05. (Cited on pages 100 and 104.)

[Kortuem 2010] Gerd Kortuem, Fahim Kawsar, Daniel Fitton and Vasughi Sun-
dramoorthy. Smart objects as building blocks for the internet of things. Inter-
net Computing, IEEE, vol. 14, no. 1, pages 44–51, 2010. (Cited on page 40.)

http://www.w3.org/TR/HTTP-in-RDF10/

Bibliography 223

[Kovatsch 2015] Frank Matthias Kovatsch. Scalable Web Technology for the Internet
of Things. PhD thesis, Diss., Eidgenössische Technische Hochschule ETH
Zürich, Nr. 22398, 2015. (Cited on pages 1 and 25.)

[Kranz 2010a] Matthias Kranz, Paul Holleis and Albrecht Schmidt. Embedded in-
teraction: Interacting with the internet of things. Internet Computing, IEEE,
vol. 14, no. 2, pages 46–53, 2010. (Cited on pages 33 and 34.)

[Kranz 2010b] Matthias Kranz, Luis Roalter and Florian Michahelles. Things that
twitter: social networks and the internet of things. In What can the In-
ternet of Things do for the Citizen (CIoT) Workshop at The Eighth Inter-
national Conference on Pervasive Computing (Pervasive 2010), pages 1–10,
2010. (Cited on page 39.)

[Krupa 2012] Yann Krupa and Laurent Vercouter. Handling privacy as contextual
integrity in decentralized virtual communities: The PrivaCIAS framework.
Web Intelligence and Agent Systems, vol. 10, no. 1, pages 105–116, 2012.
(Cited on page 73.)

[Labrou 1994] Yannis Labrou and Tim Finin. A semantics approach to KQML – a
general purpose communication language for software agents. In Proceedings
of the third international conference on Information and knowledge manage-
ment, pages 447–455. ACM, 1994. (Cited on page 49.)

[Labrou 1999] Yannis Labrou, Tim Finin and Yun Peng. Agent communication
languages: The current landscape. IEEE Intelligent systems, vol. 14, no. 2,
pages 45–52, 1999. (Cited on pages 46 and 49.)

[Langheinrich 2000] Marc Langheinrich, Friedemann Mattern, Kay Römer and Har-
ald Vogt. First steps towards an event-based infrastructure for smart things.
In Ubiquitous Computing Workshop (PACT 2000), 2000. (Cited on page 34.)

[Lardinois 2015] Frederic Lardinois. The Parrot Pot And H2O Give You A Robotic
Green Thumb, January 2015. [Online; posted 4-January-2015]. (Cited on
page 34.)

[Lieberman 2007] Joshua Lieberman, Raj Singh and Chris Goad. W3C Geospatial
Vocabulary. http://www.w3.org/2005/Incubator/geo/XGR-geo/, October
2007. Accessed: 2015-09-05. (Cited on page 100.)

[López-de Armentia 2014] Juan López-de Armentia, Diego Casado-Mansilla and
Diego López-de Ipiña. Making social networks a means to save energy. Jour-
nal of Network and Computer Applications, 2014. (Cited on page 39.)

[MacGillivray 2013] Carrie MacGillivray, Vernon Turner and Denise Lund. World-
wide Internet of Things (IoT) 2013–2020 Forecast: Billions of Things, Tril-
lions of Dollars. IDC. Doc, vol. 243661, no. 3, 2013. (Cited on pages 2
and 64.)

http://www.w3.org/2005/Incubator/geo/XGR-geo/

224 Bibliography

[Mayer 2011] Simon Mayer and Dominique Guinard. An extensible discovery service
for smart things. In Proceedings of the Second International Workshop on
Web of Things, page 7. ACM, 2011. (Cited on pages 35 and 36.)

[Mayer 2012] Simon Mayer, Dominique Guinard and Vlad Trifa. Searching in a
web-based infrastructure for smart things. In Internet of Things (IOT), 2012
3rd International Conference on the, pages 119–126. IEEE, 2012. (Cited on
page 36.)

[Mayer 2014a] Simon Mayer. Interacting with the Web of Things. PhD thesis, Diss.,
Eidgenössische Technische Hochschule ETH Zürich, Nr. 22203, 2014, 2014.
(Cited on pages 2, 33, 34 and 36.)

[Mayer 2014b] Simon Mayer, Yassin N Hassan and Gábor Sörös. A magic lens for
revealing device interactions in smart environments. In SIGGRAPH Asia
2014 Mobile Graphics and Interactive Applications, page 9. ACM, 2014.
(Cited on pages 34 and 35.)

[Mayer 2014c] Simon Mayer, Nadine Inhelder, Ruben Verborgh, Rik Van de Walle
and Friedemann Mattern. Configuration of smart environments made sim-
ple: Combining visual modeling with semantic metadata and reasoning. In
Internet of Things (IOT), 2014 International Conference on the, pages 61–66.
IEEE, 2014. (Cited on pages 2 and 38.)

[Mayer 2014d] Simon Mayer and Gabor Soros. User Interface Beaming–Seamless In-
teraction with Smart Things Using Personal Wearable Computers. In Wear-
able and Implantable Body Sensor Networks Workshops (BSN Workshops),
2014 11th International Conference on, pages 46–49. IEEE, 2014. (Cited on
pages 33 and 34.)

[Montenegro 2007] G. Montenegro, N. Kushalnagar, J. Hui and D. Culler. Trans-
mission of IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944 (Proposed
Standard), September 2007. Updated by RFCs 6282, 6775. (Cited on page 1.)

[Nazzi 2011] Elena Nazzi and Tomas Sokoler. Walky for embodied microblogging:
sharing mundane activities through augmented everyday objects. In Proceed-
ings of the 13th International Conference on Human Computer Interaction
with Mobile Devices and Services, pages 563–568. ACM, 2011. (Cited on
page 39.)

[Nissenbaum 2009] Helen Nissenbaum. Privacy in context: Technology, policy, and
the integrity of social life. Stanford University Press, 2009. (Cited on
page 182.)

[Nitti 2014a] Michele Nitti, Luigi Atzori and Irena Pletikosa Cvijikj. Network nav-
igability in the social Internet of Things. In Internet of Things (WF-IoT),
2014 IEEE World Forum on, pages 405–410. IEEE, 2014. (Cited on page 41.)

Bibliography 225

[Nitti 2014b] Michele Nitti, Roberto Girau and Luigi Atzori. Trustworthiness man-
agement in the social Internet of things. Knowledge and Data Engineering,
IEEE Transactions on, vol. 26, no. 5, pages 1253–1266, 2014. (Cited on
page 41.)

[Nottingham 2010] M. Nottingham and E. Hammer-Lahav. Defining Well-Known
Uniform Resource Identifiers (URIs). RFC 5785 (Proposed Standard), April
2010. (Cited on page 118.)

[Nottingham 2014] M. Nottingham. URI Design and Ownership. RFC 7320 (Best
Current Practice), July 2014. (Cited on page 118.)

[Odersky 2004] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,
Stphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman and
Matthias Zenger. The Scala language specification, 2004. (Cited on page 142.)

[Omicini 2004] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castel-
franchi and Luca Tummolini. Coordination artifacts: Environment-based
coordination for intelligent agents. In Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems-Volume 1,
pages 286–293. IEEE Computer Society, 2004. (Cited on page 48.)

[Omicini 2008] Andrea Omicini, Alessandro Ricci and Mirko Viroli. Artifacts in the
A&A meta-model for multi-agent systems. Autonomous agents and multi-
agent systems, vol. 17, no. 3, pages 432–456, 2008. (Cited on pages 47
and 154.)

[Ortiz 2014] Antonio M Ortiz, DH Ali, Soochang Park, Son N Han and Noel Crespi.
The cluster between Internet of Things and social networks: Review and
research challenges. 2014. (Cited on page 39.)

[Ossowski 2012] Sascha Ossowski. Agreement technologies, volume 8. Springer Sci-
ence & Business Media, 2012. (Cited on pages 51 and 52.)

[Ostermaier 2010] Benedikt Ostermaier, K Romer, Friedemann Mattern, Michael
Fahrmair and Wolfgang Kellerer. A real-time search engine for the web of
things. In Internet of Things (IOT), 2010, pages 1–8. IEEE, 2010. (Cited on
page 36.)

[Perez de Almeida 2013] Ricardo Aparecido Perez de Almeida, Michael Blackstock,
Rodger Lea, Roberto Calderon, Antonio Francisco do Prado and He-
lio Crestana Guardia. Thing broker: A twitter for things. In Proceedings
of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct
publication, pages 1545–1554. ACM, 2013. (Cited on page 39.)

[Pintus 2012] Antonio Pintus, Davide Carboni and Andrea Piras. Paraimpu: a
platform for a social web of things. In Proceedings of the 21st international

226 Bibliography

conference companion on World Wide Web, pages 401–404. ACM, 2012.
(Cited on page 39.)

[Pinyol 2013] Isaac Pinyol and Jordi Sabater-Mir. Computational trust and repu-
tation models for open multi-agent systems: a review. Artificial Intelligence
Review, vol. 40, no. 1, pages 1–25, 2013. (Cited on page 52.)

[Platon 2007] Eric Platon, Marco Mamei, Nicolas Sabouret, Shinichi Honiden and
H Van Dyke Parunak. Mechanisms for environments in multi-agent systems:
Survey and opportunities. Autonomous Agents and Multi-Agent Systems,
vol. 14, no. 1, pages 31–47, 2007. (Cited on page 47.)

[Poslad 2007] Stefan Poslad. Specifying protocols for multi-agent systems interac-
tion. ACM Transactions on Autonomous and Adaptive Systems (TAAS),
vol. 2, no. 4, page 15, 2007. (Cited on page 50.)

[Prud’hommeaux 2014] Eric Prud’hommeaux and Gavin Carothers. RDF 1.1 Turtle
- Terse RDF Triple Language, W3C Recommendation 25 February 2014.
W3C Recommendation, World Wide Web Consortium (W3C), February 25
2014. (Cited on page 143.)

[Randall 2003] Dave Randall. Living inside a smart home: A case study. In Inside
the smart home, pages 227–246. Springer, 2003. (Cited on pages 2 and 33.)

[Rao 1995] Anand S Rao, Michael P Georgeffet al. BDI agents: From theory to
practice. In ICMAS, volume 95, pages 312–319, 1995. (Cited on page 46.)

[Rao 1996] Anand S Rao. AgentSpeak (L): BDI agents speak out in a logical com-
putable language. In Agents Breaking Away, pages 42–55. Springer, 1996.
(Cited on page 155.)

[Ricci 2007a] Alessandro Ricci, Mirko Viroli and Andrea Omicini. CArtAgO: A
framework for prototyping artifact-based environments in MAS. In Environ-
ments for Multi-Agent Systems III, pages 67–86. Springer, 2007. (Cited on
page 48.)

[Ricci 2007b] Alessandro Ricci, Mirko Viroli and Andrea Omicini. Give agents their
artifacts: the A&A approach for engineering working environments in MAS.
In Proceedings of the 6th international joint conference on Autonomous
agents and multiagent systems, page 150. ACM, 2007. (Cited on page 154.)

[Ricci 2009] Alessandro Ricci, Michele Piunti, Mirko Viroli and Andrea Omicini.
Environment programming in CArtAgO. In Multi-Agent Programming:,
pages 259–288. Springer, 2009. (Cited on pages 154 and 157.)

[Ricci 2011] Alessandro Ricci, Michele Piunti and Mirko Viroli. Environment pro-
gramming in multi-agent systems: an artifact-based perspective. Autonomous
Agents and Multi-Agent Systems, vol. 23, no. 2, pages 158–192, 2011. (Cited
on page 47.)

Bibliography 227

[Rietzler 2013] Michael Rietzler, Julia Greim, Marcel Walch, Florian Schaub, Björn
Wiedersheim and Michael Weber. homeBLOX: introducing process-driven
home automation. In Proceedings of the 2013 ACM conference on Pervasive
and ubiquitous computing adjunct publication, pages 801–808. ACM, 2013.
(Cited on page 38.)

[Roduner 2007] Christof Roduner, Marc Langheinrich, Christian Floerkemeier and
Beat Schwarzentrub. Operating appliances with mobile phones–strengths and
limits of a universal interaction device. In Pervasive Computing, pages 198–
215. Springer, 2007. (Cited on page 34.)

[Romer 2010] Kay Romer, Benedikt Ostermaier, Friedemann Mattern, Michael
Fahrmair and Wolfgang Kellerer. Real-time search for real-world entities:
A survey. Proceedings of the IEEE, vol. 98, no. 11, pages 1887–1902, 2010.
(Cited on pages 35 and 36.)

[Rose 2014] David Rose. Enchanted objects: Design, human desire, and the internet
of things. Simon and Schuster, 2014. (Cited on page 34.)

[Rukzio 2006a] Enrico Rukzio. Physical mobile interactions: Mobile devices as per-
vasive mediators for interactions with the real world. PhD thesis, University
of Munich, 2006. (Cited on pages 33 and 34.)

[Rukzio 2006b] Enrico Rukzio, Karin Leichtenstern, Vic Callaghan, Paul Holleis,
Albrecht Schmidt and Jeannette Chin. An experimental comparison of phys-
ical mobile interaction techniques: Touching, pointing and scanning. In Ubi-
Comp 2006: Ubiquitous Computing, pages 87–104. Springer, 2006. (Cited
on page 34.)

[Sabater 2005] Jordi Sabater and Carles Sierra. Review on computational trust and
reputation models. Artificial intelligence review, vol. 24, no. 1, pages 33–60,
2005. (Cited on page 52.)

[Sakimura 2014] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros and C. Mor-
timore. OpenID Connect Core 1.0. http://www.openid.net/specs/
openid-connect-core-1_0.html, February 2014. Accessed: 2014-05-15.
(Cited on pages 17 and 121.)

[Sambra 2015a] Andrei Sambra and Stéphane Corlosquet. WebID 1.0 - Web Identity
and Discovery, W3C Editor’s Draft 30 April 2015. W3C IG Editor’s draft,
World Wide Web Consortium (W3C), April 30 2015. (Cited on pages 121,
141, 142, 145, 147, 150 and 161.)

[Sambra 2015b] Andrei Sambra and Stephane Corlosquet. WebID 1.0, Web Iden-
tity and Discovery. https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/
identity-respec.html, 2015. Accessed: 2015-02-09. (Cited on pages 17
and 106.)

http://www.openid.net/specs/openid-connect-core-1_0.html
http://www.openid.net/specs/openid-connect-core-1_0.html
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.html
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.html

228 Bibliography

[Sauermann 2008] Leo Sauermann and Richard Cyganiak. Cool URIs for the Se-
mantic Web. W3C Interest Group Note, 2008. (Cited on page 105.)

[Schmid 2007] Thomas Schmid and Mani B Srivastava. Exploiting social networks
for sensor data sharing with SenseShare. Center for Embedded Network
Sensing, 2007. (Cited on page 39.)

[Searle 1969] John R Searle. Speech acts: An essay in the philosophy of language.
Cambridge university press, 1969. (Cited on page 48.)

[Shelby 2012] Z. Shelby, S. Chakrabarti, E. Nordmark and C. Bormann. Neighbor
Discovery Optimization for IPv6 over Low-Power Wireless Personal Area
Networks (6LoWPANs). RFC 6775 (Proposed Standard), November 2012.
(Cited on page 1.)

[Shelby 2014a] Z. Shelby, K. Hartke and C. Bormann. The Constrained Application
Protocol (CoAP). RFC 7252 (Proposed Standard), June 2014. (Cited on
pages 1, 25, 101, 112, 114, 115 and 182.)

[Shelby 2014b] Zach Shelby, Klaus Hartke and Carsten Bormann. The Constrained
Application Protocol (CoAP). 2014. (Cited on page 30.)

[Sherchan 2013] Wanita Sherchan, Surya Nepal and Cecile Paris. A survey of trust
in social networks. ACM Computing Surveys (CSUR), vol. 45, no. 4, page 47,
2013. (Cited on page 52.)

[Shoham 1993] Yoav Shoham. Agent-oriented programming. Artificial intelligence,
vol. 60, no. 1, pages 51–92, 1993. (Cited on page 47.)

[Sichman 1998] Jaime Simao Sichman, Yves Demazeau, Rosaria Conte and Cris-
tiano Castelfranchi. A social reasoning mechanism based on dependence net-
works. In Proceedings of 11th European Conference on Artificial Intelligence,
pages 416–420, 1998. (Cited on page 50.)

[Sichman 2001] J Sichman and Yves Demazeau. On social reasoning in multi-agent
systems. Inteligencia Artificial, vol. 5, no. 13, 2001. (Cited on page 50.)

[Singh 1998] Munindar P Singh. Agent communication languages: Rethinking the
principles. Computer, vol. 31, no. 12, pages 40–47, 1998. (Cited on page 49.)

[Snell 2014] J. Snell. Prefer Header for HTTP. RFC 7240 (Proposed Standard),
June 2014. (Cited on page 146.)

[Speicher 2015] Steve Speicher, John Arwe and Ashok Malhotra. Linked Data Plat-
form 1.0, W3C Recommendation 26 February 2015. W3C Recommendation,
World Wide Web Consortium (W3C), February 26 2015. (Cited on pages 21,
22, 32, 42, 115, 145 and 182.)

Bibliography 229

[Sporny 2014] Manu Sporny, Greg Kellogg and Markus Lanthaler. JSON-LD 1.0 -
A JSON-based Serialization for Linked Data, W3C Recommendation 16 Jan-
uary 2014. W3C Recommendation, World Wide Web Consortium (W3C),
February 25 2014. (Cited on page 32.)

[Streitz 2005] Norbert A Streitz, Carsten Rocker, Thorsten Prante, Daniel van
Alphen, Richard Stenzel and Carsten Magerkurth. Designing smart arti-
facts for smart environments. Computer, vol. 38, no. 3, pages 41–49, 2005.
(Cited on page 34.)

[Sycara 1998] Katia P Sycara. Multiagent systems. AI magazine, vol. 19, no. 2,
page 79, 1998. (Cited on page 46.)

[Takayama 2012] Leila Takayama, Caroline Pantofaru, David Robson, Bianca Soto
and Michael Barry. Making technology homey: finding sources of satisfaction
and meaning in home automation. In Proceedings of the 2012 ACM Con-
ference on Ubiquitous Computing, pages 511–520. ACM, 2012. (Cited on
pages 2 and 33.)

[Vaquero 2014] Luis M Vaquero and Luis Rodero-Merino. Finding your way in the
fog: Towards a comprehensive definition of fog computing. ACM SIGCOMM
Computer Communication Review, vol. 44, no. 5, pages 27–32, 2014. (Cited
on page 82.)

[Vazquez 2008] Juan Ignacio Vazquez and Diego Lopez-De-Ipina. Social devices:
autonomous artifacts that communicate on the internet. In The Internet of
Things, pages 308–324. Springer, 2008. (Cited on page 40.)

[Verborgh 2011] Ruben Verborgh, Thomas Steiner, DV Deursen, Rik Van de Walle
and J Gabarró Vallés. Efficient runtime service discovery and consumption
with hyperlinked RESTdesc. In Next Generation Web Services Practices
(NWeSP), 2011 7th International Conference on, pages 373–379. IEEE, 2011.
(Cited on page 38.)

[W3C OWL Working Group 2012] W3C OWLWorking Group. OWL 2 Web Ontol-
ogy Language Document Overview (Second Edition), W3C Recommendation
11 December 2012. W3C Recommendation, World Wide Web Consortium
(W3C), December 11 2012. (Cited on pages 21 and 100.)

[Webber 2010] Jim Webber, Savas Parastatidis and Ian Robinson. Rest in practice:
Hypermedia and systems architecture. " O’Reilly Media, Inc.", 2010. (Cited
on pages 12, 114, 116 and 117.)

[Weiser 1991] Mark Weiser. The computer for the 21st century. Scientific american,
vol. 265, no. 3, pages 94–104, 1991. (Cited on pages 1 and 33.)

[Weyns 2005] Danny Weyns, H Van Dyke Parunak, Fabien Michel, Tom Holvoet
and Jacques Ferber. Environments for multiagent systems state-of-the-art

230 Bibliography

and research challenges. In Environments for multi-agent systems, pages
1–47. Springer, 2005. (Cited on pages 46 and 47.)

[Weyns 2007] Danny Weyns, Andrea Omicini and James Odell. Environment as a
first class abstraction in multiagent systems. Autonomous agents and multi-
agent systems, vol. 14, no. 1, pages 5–30, 2007. (Cited on page 47.)

[Wilde 2007] Erik Wilde. Putting things to REST. School of Information, 2007.
(Cited on pages 1, 23 and 37.)

[Wooldridge 1995] Michael Wooldridge and Nicholas R Jennings. Intelligent agents:
Theory and practice. The knowledge engineering review, vol. 10, no. 02, pages
115–152, 1995. (Cited on page 46.)

[Yeung 2009] Ching-man Au Yeung, Ilaria Liccardi, Kanghao Lu, Oshani Senevi-
ratne and Tim Berners-Lee. Decentralization: The future of online social
networking. In W3C Workshop on the Future of Social Networking Position
Papers, volume 2, pages 2–7, 2009. (Cited on page 16.)

[Zambonelli 2003] Franco Zambonelli, Nicholas R Jennings and Michael
Wooldridge. Developing multiagent systems: The Gaia methodology.
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 12, no. 3, pages 317–370, 2003. (Cited on page 46.)

[Zhang 2012] Chunhong Zhang, Cheng Cheng and Yang Ji. Architecture design for
social web of things. In Proceedings of the 1st International Workshop on
Context Discovery and Data Mining, page 3. ACM, 2012. (Cited on page 39.)

École Nationale Supérieure des Mines
de Saint-Étienne

NNT : 2016 EMSE 0813

Andrei CIORTEA

WEAVING THE SOCIAL WEB OF THINGS :
ENABLING AUTONOMOUS AND FLEXIBLE INTERACTION IN THE
INTERNET OF THINGS

Speciality : COMPUTER SCIENCE

Keywords : Web of Things, Internet of Things, Multi-Agent Systems, Semantic Web

Abstract :

The Internet of Things (IoT) aims to create a global ubiquitous ecosystem composed of large
numbers of heterogeneous devices. To achieve this vision, the World Wide Web is emerging
as a suitable candidate to interconnect IoT devices and services at the application layer into a
Web of Things (WoT).

However, the WoT is evolving towards large silos of things, and thus the vision of a global
ubiquitous ecosystem is not fully achieved. Furthermore, even if the WoT facilitates mashing
up heterogeneous IoT devices and services, existing approaches result in static IoT mashups
that cannot adapt to dynamic environments and evolving user requirements. The latter
emphasizes another well-recognized challenge in the IoT, that is enabling people to interact
with a vast, evolving, and heterogeneous IoT.

To address the above limitations, we propose an architecture for an open and self-governed
IoT ecosystem composed of people and things situated and interacting in a global
environment sustained by heterogeneous platforms. Our approach is to endow things with
autonomy and apply the social network metaphor to create flexible networks of people and
autonomous things. We base our approach on results from multi-agent and WoT research,
and we call the envisioned IoT ecosystem the Social Web of Things.

Our proposal emphasizes heterogeneity, discoverability and flexible interaction in the IoT. In
the same time, it provides a low entry-barrier for developers and users via multiple layers of
abstraction that enable them to effectively cope with the complexity of the overall ecosystem.
We implement several application scenarios to demonstrate these features.

École Nationale Supérieure des Mines
de Saint-Étienne

NNT : 2016 EMSE 0813

Andrei CIORTEA

TISSER LE WEB SOCIAL DES OBJETS :
PERMETTRE UNE INTERACTION AUTONOME ET FLEXIBLE DANS
L’INTERNET DES OBJETS

Spécialité: Informatique

Mots clefs : Web des Objets, Internet des Objets, Systèmes Multi-Agent, Web Sémantique

Résumé :

L’Internet des Objets (IoT) vise à créer un eco-système global et ubiquitaire composé d’un
grand nombre d’objets hétérogènes. Afin d’atteindre cette vision, le World Wide Web
apparaît comme un candidat adapté pour interconnecter objets et services à la couche
applicative en un Web des Objets (WoT).

Cependant l’évolution actuelle du WoT produit des silos d’objets et empêche ainsi la mise en
place de cette vision. De plus, même si le Web facilite la composition d’objets et services
hétérogènes, les approches existantes produisent des compositions statiques incapables de
s’adapter à des environnements dynamiques et des exigences évolutives. Un autre défi est à
relever: permettre aux personnes d’interagir avec le vaste, évolutif et hétérogène IoT.

Afin de répondre à ces limitations, nous proposons une architecture pour IoT ouvert et auto-
gouverné, constitué de personnes et d’objets situés, en interaction avec un environnement
global via des plateformes hétérogènes. Notre approche consiste de rendre les objets
autonomes et d’appliquer la métaphore des réseaux sociaux afin de créer des réseaux
flexibles de personnes et d’objets. Nous fondons notre approche sur les résultats issus des
domaines des multi-agents et du WoT afin de produit un WoT Social.

Notre proposition prend en compte les besoins d’hétérogénéité, de découverte et d’interaction
flexible dans l’IoT. Elle offre également un coût minimal pour les développeurs et les
utilisateurs via différentes couches d’abstraction permettant de limité la complexité de cet
éco-système. Nous démontrons ces caractéristiques par la mise en oeuvre de plus scénarios
applicatifs.

	Introduction
	Motivation
	Research Questions
	Dissertation Outline

	I State of the Art
	A Hitchhiker's Guide to the World Wide Web
	The Architecture of the Web
	Representational State Transfer
	The ``out-of-band information'' problem

	The Web of People
	The problem of walled gardens
	An open and distributed Social Web
	Enabling technologies

	The Web for Machines
	Adding structure to information
	Web ontologies
	Reading/Writing Linked Data

	The Web of Things
	The need for an application architecture
	A resource-oriented architecture

	Summary

	Emerging Paradigms in the Web of Things
	The Web of Things in Practice
	WoT devices
	WoT platforms
	Interoperability in the WoT

	Interacting with Physical Things
	Local interaction
	Remote interaction

	Physical Mashups
	Process-driven composition
	Goal-driven composition

	Social Aspects in the WoT
	Platforms and applications
	Social things

	Summary

	Autonomy, Sociability and Regulation
	Multi-Agent Systems
	Properties of agents and multi-agent systems
	Modeling dimensions for multi-agent systems

	Sociability in Multi-Agent Systems
	Agents and artifacts
	Interaction
	Social reasoning

	Regulation in Multi-Agent Systems
	Norms in MAS
	Social control
	Normative organisations

	Summary

	II Designing a Social Web of Things
	A Layered Architecture for the Social Web of Things
	Application Scenarios
	Discoverability: The social TV
	Flexible interaction: The wake-up call
	Remote interaction: The laundry room
	Coordination: A welcoming home
	Discussion

	Principles
	Foundational principles
	General design principles

	Layered Architecture
	Agency layer
	Social layer
	Normative layer
	Application layer

	Summary

	A Model for Socio-technical Networks
	Modeling Dimensions
	Preliminary definitions
	The social dimension
	The normative dimension
	The spatial dimension
	The digital dimension

	Formal Definitions
	Structure
	Inferences
	Dynamics
	Norms

	Digital Socio-technical Networks
	Entity and relation types
	Operation types
	Social artifacts

	Summary

	A Hypermedia-driven Social Web of Things
	A Semantic Description Framework for STNs
	STN ontology
	Agent descriptions
	Platform descriptions
	Digital artifact descriptions

	Uniform Interfaces for STN Platforms
	Uniformity constraints
	Control-driven interfaces
	Data-driven interfaces
	Mixed interfaces

	A Five-level Integration Strategy for STN Platforms
	Level 1: Publish a platform description
	Level 2: Enable social things as first-class citizens
	Level 3: Produce STN-compliant representations
	Level 4: Expose a uniform API
	Level 5: Make the platform open

	Summary

	III Experience and Validation
	Deploying a World-Wide Socio-technical Graph
	Integrating Existing Platforms into the SWoT
	Facebook
	SoundCloud
	Twitter
	Dweet.io
	Discussion

	ThingsNet: a Level 5 STN Platform
	Design and implementation
	API overview
	Discussion

	Deployment of a World-Wide Socio-technical Graph
	Deployment scenario
	A browser for STNs
	Discussion: browsing the Social Web of Things

	Summary

	Bringing Rational Agents to the Social Web of Things
	A Multi-agent Middleware for the Social Web of Things
	Programming social things as BDI agents
	Multi-agent environments for the SWoT

	Use Case: Crawling the Social Web of Things
	Deployment Scenario
	Agent logic
	Lessons learned

	Use Case: Flexible Interaction among Social Things
	Deployment scenario
	Agent logic
	Lessons learned

	Use Case: Remote Interaction with Social Things
	Deployment Scenario
	Agent logic
	Lessons learned

	Use Case: Regulation in the Social Web of Things
	Organisational specification
	Agent logic
	Lessons learned

	Summary

	IV Conclusions and Perspectives
	Conclusions and Perspectives
	Summary
	Contributions
	Future Work
	Limitations
	Privacy preservation
	Social reasoning

	List of publications

	V Appendices
	Examples of STN Description Documents
	Facebook
	Twitter
	SoundCloud
	Dweet.io
	ThingsNet

	Normative Organizations for Home Automation
	Bibliography

